The greatest European mathematician of the Middle Ages was Leonardo of Pisa[21] (ca. 1170-1250). He was very influential in making the Hindu-Arabic numerals known in Europe, wrote extensively on algebra, and was the author of one book on geometry. He contributed nothing to the elementary theory, however. The first edition of Euclid was printed in Latin in 1482, the first one in English appearing in 1570.
Our symbols are modern, + and - first appearing in a German work in 1489; = in Recorde's "Whetstone of Witte" in 1557; > and < in the works of Harriot (1560-1621); and × in a publication by Oughtred (1574-1660).
The most noteworthy advance in geometry in modern times was made by the great French philosopher Descartes, who published a small work entitled "La Géométrie" in 1637. From this springs the modern analytic geometry, a subject that has revolutionized the methods of all mathematics. Most of the subsequent discoveries in mathematics have been in higher branches. To the great Swiss mathematician Euler (1707-1783) is due, however, one proposition that has found its way into elementary geometry, the one showing the relation between the number of edges, vertices, and faces of a polyhedron.
There has of late arisen a modern elementary geometry devoted chiefly to special points and lines relating to the triangle and the circle, and many interesting propositions have been discovered. The subject is so extensive that it cannot find any place in our crowded curriculum, and must necessarily be left to the specialist.[22] Some idea of the nature of the work may be obtained from a mention of a few propositions:
The medians of a triangle are concurrent in the centroid, or center of gravity of the triangle.
The bisectors of the various interior and exterior angles of a triangle are concurrent by threes in the incenter or in one of the three excenters of the triangle.
The common chord of two intersecting circles is a special case of their radical axis, and tangents to the circles from any point on the radical axis are equal.
If O is the orthocenter of the triangle ABC, and X, Y, Z are the feet of the perpendiculars from A, B, C respectively, and P, Q, R are the mid-points of a, b, c respectively, and L, M, N are the mid-points of OA, OB, OC respectively; then the points L, M, N; P, Q, R; X, Y, Z all lie on a circle, the "nine points circle."