Theorem. Two lines in the same plane perpendicular to the same line cannot meet, however far they are produced.

This proposition is not in Euclid, and it is introduced for educational rather than for mathematical reasons. Euclid introduced the subject by the proposition that, if alternate angles are equal, the lines are parallel. It is, however, simpler to begin with this proposition, and there is some advantage in stating it in such a way as to prove that parallels exist before they are defined. The proposition is properly followed by the definition of parallels and by the postulate that has been discussed on [page 127].

A good application of this proposition is the one concerning a method of drawing parallel lines by the use of a carpenter's square. Here two lines are drawn perpendicular to the edge of a board or a ruler, and these are parallel.

Theorem. If a line is perpendicular to one of two parallel lines, it is perpendicular to the other also.

This, like the preceding proposition, is a special case under a later theorem. It simplifies the treatment of parallels, however, and the beginner finds it easier to approach the difficulties gradually, through these two cases of perpendiculars. It should be noticed that this is an example of a partial converse, as explained on [page 175]. The preceding proposition may be stated thus: If a is ⊥ to x and b is ⊥ to x, then a is || to b. This proposition may be stated thus: If a is ⊥ to x and a is || to b, then b is ⊥ to x. This is, therefore, a partial converse.

These two propositions having been proved, the usual definitions of the angles made by a transversal of two parallels may be given. It is unfortunate that we have no name for each of the two groups of four equal angles, and the name of "transverse angles" has been suggested. This would simplify the statements of certain other propositions; thus: "If two parallel lines are cut by a transversal, the transverse angles are equal," and this includes two propositions as usually given. There is not as yet, however, any general sanction for the term.

Theorem. If two parallel lines are cut by a transversal, the alternate-interior angles are equal.

Euclid gave this as half of his Proposition 29. Indeed, he gives only four theorems on parallels, as against five propositions and several corollaries in most of our American textbooks. The reason for increasing the number is that each proposition may be less involved. Thus, instead of having one proposition for both exterior and interior angles, modern authors usually have one for the exterior and one for the interior, so as to make the difficult subject of parallels easier for beginners.

Theorem. When two straight lines in the same plane are cut by a transversal, if the alternate-interior angles are equal, the two straight lines are parallel.

This is the converse of the preceding theorem, and is half of Euclid I, 28, his theorem being divided for the reason above stated. There are several typical pairs of equal or supplemental angles that would lead to parallel lines, of which Euclid uses only part, leaving the other cases to be inferred. This accounts for the number of corollaries in this connection in later textbooks.