It thus appears that the effort to make geometry practical is by no means new. Euclid knew of it, the Middle Ages contributed to it, that period vaguely styled the Renaissance joined in the movement, and the first three centuries of printing contributed a large literature to the

subject. Out of all this effort some genuine good remains, but relatively not very much.[8] And so it will be with the present movement; it will serve its greatest purpose in making teachers think and read, and in adding to their interest and enthusiasm and to the interest of their pupils; but it will not greatly change geometry, because no serious person ever believed that geometry was taught chiefly for practical purposes, or was made more interesting or valuable through such a pretense. Changes in sequence, in definitions, and in proofs will come little by little; but that there will be any such radical change in these matters in the immediate future, as some writers have anticipated, is not probable.[9]

A recent writer of much acumen[10] has summed up this thought in these words:

Not one tenth of the graduates of our high schools ever enter professions in which their algebra and geometry are applied to concrete realities; not one day in three hundred sixty-five is a high school graduate called upon to "apply," as it is called, an algebraic or a geometrical proposition.... Why, then, do we teach these subjects, if this alone is the sense of the word "practical"!... To me the solution of this paradox consists in boldly confronting the dilemma, and in saying that our conception of the practical utility of those studies must be readjusted, and that we have frankly to face the truth that the "practical" ends we seek are in a sense ideal practical ends, yet such as have, after all, an eminently utilitarian value in the intellectual sphere.

He quotes from C. S. Jackson, a progressive contemporary teacher of mechanics in England, who speaks of pupils confusing millimeters and centimeters in some simple computation, and who adds:

There is the enemy! The real enemy we have to fight against, whatever we teach, is carelessness, inaccuracy, forgetfulness, and slovenliness. That battle has been fought and won with diverse weapons. It has, for instance, been fought with Latin grammar before now, and won. I say that because we must be very careful to guard against the notion that there is any one panacea for this sort of thing. It borders on quackery to say that elementary physics will cure everything.

And of course the same thing may be said for mathematics. Nevertheless it is doubtful if we have any other subject that does so much to bring to the front this danger of carelessness, of slovenly reasoning, of inaccuracy, and of forgetfulness as this science of geometry, which has been so polished and perfected as the centuries have gone on.

There have been those who did not proclaim the utilitarian value of geometry, but who fell into as serious an error, namely, the advocating of geometry as a means of training the memory. In times not so very far past, and to some extent to-day, the memorizing of proofs has been justified on this ground. This error has, however, been fully exposed by our modern psychologists. They have shown that the person who memorizes the propositions of Euclid by number is no more capable of memorizing other facts than he was before, and that the learning of proofs verbatim is of no assistance whatever in retaining matter that is helpful in other lines of work. Geometry, therefore, as a training of the memory is of no more value than any other subject in the curriculum.