There are many applications of this principle of parallel translation in practical construction work. The principle is more far-reaching than here intimated, however, and a few words as to its significance will now be in place.

The efforts usually made to improve the spirit of Euclid are trivial. They ordinarily relate to some commonplace change of sequence, to some slight change in language, or to some narrow line of applications. Such attempts require no particular thought and yield no very noticeable result. But there is a possibility, remote though it may be at present, that a geometry will be developed that will be as serious as Euclid's and as effective in the education of the thinking individual. If so, it seems probable that it will not be based upon the congruence of triangles, by which so many propositions of Euclid are proved, but upon certain postulates of motion, of which one is involved in the above illustration,—the postulate of parallel translation. If to this we join the two postulates of rotation about an axis,[64] leading to axial symmetry; and rotation about a point,[65] leading to symmetry with respect to a center, we have a group of three motions upon which it is possible to base an extensive and rigid geometry.[66] It will be through some such effort as this, rather than through the weakening of the Euclid-Legendre style of geometry, that any improvement is likely to come. At present, in America, the important work for teachers is to vitalize the geometry they have,—an effort in which there are great possibilities,—seeing to it that geometry is not reduced to mere froth, and recognizing the possibility of another geometry that may sometime replace it,—a geometry

as rigid, as thought-compelling, as logical, and as truly educational.

Theorem. The sum of the interior angles of a polygon is equal to two right angles, taken as many times less two as the figure has sides.

This interesting generalization of the proposition about the sum of the angles of a triangle is given by Proclus. There are several proofs, but all are based upon the possibility of dissecting the polygon into triangles. The point from which lines are drawn to the vertices is usually taken at a vertex, so that there are n - 2 triangles. It may however be taken within the figure, making n triangles, from the sum of the angles of which the four right angles about the point must be subtracted. The point may even be taken on one side, or outside the polygon, but the proof is not so simple. Teachers who desire to do so may suggest to particularly good students the proving of the theorem for a concave polygon, or even for a cross polygon, although the latter requires negative angles.

Some schools have transit instruments for the use of their classes in trigonometry. In such a case it is a good plan to measure the angles in some piece of land so as to verify the proposition, as well as show the care that must be taken in reading angles. In the absence of this exercise it is well to take any irregular polygon and measure the angles by the help of a protractor, and thus accomplish the same results.

Theorem. The sum of the exterior angles of a polygon, made by producing each of its sides in succession, is equal to four right angles.

This is also a proposition not given by the ancient writers. We have, however, no more valuable theorem for the purpose of showing the nature and significance of the negative angle; and teachers may arouse a great deal of interest in the negative quantity by showing to a class that when an interior angle becomes 180° the exterior angle becomes 0, and when the polygon becomes concave the exterior angle becomes negative, the theorem holding for all these cases. We have few better illustrations of the significance of the negative quantity, and few better opportunities to use the knowledge of this kind of quantity already acquired in algebra.