The presence of large numbers of vertebræ is noteworthy among those fishes which swim for long distances, as, for example, many of the mackerel family. Among such there is often found a high grade of muscular power, or even of activity, associated with a large number of vertebræ, these vertebræ being individually small and little differentiated. For long-continued muscular action of a uniform kind there would be perhaps an advantage in the low development of the vertebral column. For muscular alertness, moving short distances with great speed, the action of a fish constantly on its guard against enemies or watching for its prey, the advantage would be on the side of a few vertebræ. There is often a correlation between the free-swimming habit and slenderness and suppleness of the body, which again is often dependent on an increase in numbers of the vertebral segments. These correlations appear as a disturbing element in the problem rather than as furnishing a clew to its solution. In some groups of fresh-water fishes there is a reduction in number of vertebræ, not associated with any degree of specialization of the individual bone, but correlated with simple reduction in size of body. This is apparently a phenomenon of degeneration, a survival of dwarfs, where conditions are unfavorable in full growth.

All these effects should be referable to the same group of causes. They may, in fact, be combined in one statement. All other fishes now extant, as well as all fishes existing prior to Cretaceous times, have a larger number of vertebræ than the marine shore fishes of the tropics of the present period. There is good reason to believe that in most groups of spiny-rayed fishes, those with the smaller number of segments are at once the most highly organized and the most primitive. This is true among the blennies, the sculpins, the flounders, the perches, and probably the labroid fishes as well. The present writer once held the contrary view, that the forms with the higher numbers were primitive, but the evidence both from comparative anatomy and from palæontology seems to indicate that among spiny-rayed fishes the forms most ancient, most generalized, and most synthetic are those with about 24 vertebræ. The soft-rayed fishes without exception show larger numbers, and these are still more primitive. This apparent contradiction is perhaps explained by Dr. Boulenger's suggestion that the prevalence of the same number, 24, in the vertebræ of various families of spiny-rayed fishes is due to common descent, probably from Cretaceous berycoids having this number. In this theory, perches, sparoids, carangoids, chætodonts, labroids, parrot-fishes, gobies, flounders, and sculpins must be regarded as having a common origin from which all have diverged since Jurassic times. This view is not at all unlikely and is not inconsistent with the facts of palæontology. If this be the case, the members of these and related families which have larger numbers of vertebræ must have diverged from the primitive stock. The change has been one of degeneration, the individual vertebræ being reduced in size and complexity, with a vegetative increase in their number. At the same time, the body having the greater number of segments is the more flexible though the segments themselves are less specialized.

The primitive forms live chiefly along tropical shores, while forms with increased numbers of vertebræ are found in all other localities. This fact must be considered in any hypothesis as to the causes producing such changes. If the development of large numbers be a phase of degeneration the causes of such degeneration must be sought in the colder seas, in the rivers, and in the oceanic abysses. What have these waters in common that the coral reefs, the lava crags, and tide-pools of the tropics have not?

It is certain that the possession of fewer vertebræ indicates the higher rank, the greater specialization of parts, even though the many vertebræ be a feature less primitive. The evolution of fishes is rarely a movement of progress toward complexity. The time movement in some groups is accompanied by degradation and loss of parts, by vegetative repetition of structures, and often by a movement from the fish-form toward the eel-form. Water life is less exacting than land life, having less variation of conditions. It is, therefore, less effective in pushing forward the differentiation of parts. When vertebræ are few in number each one is relatively larger, its structure is more complicated, its appendages larger and more useful, and the fins with which it is connected are better developed. In other words, the tropical fish is more intensely and compactly a fish, with a better fish equipment, and in all ways better fitted for the business of a fish, especially for that of a fish that stays at home.

Fig. 155.—Skeleton of Red Rockfish, Sebastodes miniatus Jordan and Gilbert. California.

Fig. 156.—Skeleton of a spiny-rayed fish of the tropics, Holacanthus ciliaris (Linnæus).

In the center of competition no species can afford to be handicapped by a weak back-bone and redundant vertebræ. Those who are thus weighted cannot hold their own. They must change or perish.

The conditions most favorable to fish life are among the rocks and reefs of the tropical seas. About the coral reefs is the center of fish competition. A coral archipelago is the Paris of fishes. In such regions is found the greatest variety of surroundings, and therefore the greatest number of possible adjustments. The struggle is between fish and fish, not between fishes and hard conditions of life. No form is excluded from the competition. Cold, darkness, and foul water do not shut out competitors, nor does any evil influence sap the strength. The heat of the tropics does not make the sea-water hot. It is never sultry or laden with malaria.