In our fresh-water fishes each species on an average has been described as new from three to four times, on account of minor variations, real or supposed. In Europe, where the fishes have been studied longer and by more different men, upwards of six or eight nominal species have been described for each one that is now considered distinct.
Special Creation Impossible.—It is evident, from these and other facts, that the idea of a separate creation for each species of fishes in each river-basin, as entertained by Agassiz, is wholly incompatible with our present knowledge of the specific distinctions or of the geographical distribution of fishes. This is an unbroken gradation in the variations from the least to the greatest,—from the peculiarities of the individual, through local varieties, geographical subspecies, species, sub-genera, genera, families, super-families, and so on, until all fish-like vertebrates are included in a single bond of union.
Origin of American Species of Fishes.—It is, however, evident that not all American types of fishes had their origin in America, or even first assumed in America their present forms. Some of these are perhaps immigrants from northern Asia, where they still have their nearest relatives. Still others are evidently modified importations from the sea; and of these some are very recent immigrants, land-locked species which have changed very little from the parent stock.
The problems of analogous variation or parallelism without homology are very often met with among fishes. In shallow, swift brooks in all lands there are found small fishes which hug the bottom—large-finned, swift of movement, with speckled coloration, and with the air-bladder reduced in size. In the eastern United States these fishes are darters, dwarf perches; in northern India they are catfishes; in Japan, gobies or loaches; in Canada, sculpins; in South America, characins. Members of various groups may be modified to meet the same conditions of life. Being modified to look alike, the thought of mutual affinity is naturally suggested, but in such cases the likeness is chiefly external. The internal organs show little trace of such modifications. The inside of an animal tells what it really is, the outside where it has been. In other words, it is the external characters which are most readily affected by the environment. Throughout all groups of animals and plants, there are large branches similarly affected by peculiarities of conditions.
This is the basis of the law of "Adaptive Radiation." Prof. H. F. Osborn thus states this law:
"It is a well-known principle of zoological evolution that an isolated region, if large and sufficiently varied in its topography, soil, climate, and vegetation, will give rise to a diversified fauna according to the law of adaptive radiation from primitive and central types. Branches will spring off in all directions to take advantage of every possible opportunity of securing food. The modifications which animals undergo in this adaptive radiation are largely of mechanical nature; they are limited in number and kind by hereditary stirp or germinal influences, and thus result in the independent evolution of similar types in widely separated regions under the law of parallelism or homoplasy."
FOOTNOTES:
[63] This chapter and the next are in substance reprinted from an essay published by the present writer in a volume called Science Sketches. A. C. McClurg & Co., Chicago.
[64] Salvelinus fontinalis Mitchill.