The Process of Natural Selection.—We can say, in general, that in all waters not absolutely uninhabitable there are fishes. The processes of natural selection have given to each kind of river or lake species of fishes adapted to the conditions of life which obtain there. There is no condition of water, of bottom, of depth, of speed of current, but finds some species with characters adjusted to it. These adjustments are, for the most part, of long standing; and the fauna of any single stream has as a rule been produced by immigration from other regions or from other streams. Each species has an ascertainable range of distribution, and within this range we may be reasonably certain to find it in any suitable waters.
Fig. 189.—Slippery-dick or Doncella, Halichœres bivittatus Bloch, a fish of the coral reefs, Key West. Family Labridæ.
But every species has beyond question some sort of limit to its distribution, some sort of barrier which it has never passed in all the years of its existence. That this is true becomes evident when we compare the fish fauna of widely separated rivers. Thus the Sacramento, Connecticut, Rio Grande, and St. John's Rivers have not a single species in common; and with one or two exceptions, not a species is common to any two of them. None of these[100] has any species peculiar to itself, and each shares a large part of its fish fauna with the water-basin next to it. It is probably true that the faunas of no two distinct hydrographic basins are wholly identical, while on the other hand there are very few species confined to a single one. The supposed cases of this character, some twenty in number, occur chiefly in the streams of the South Atlantic States and of Arizona. All of these need, however, the confirmation of further exploration. It is certain that in no case has an entire river fauna[101] originated independently from the divergence into separate species of the descendants of a single type.
The existence of boundaries to the range of species implies, therefore, the existence of barriers to their diffusion. We may now consider these barriers and in the same connection the degree to which they may be overcome.
Local Barriers.—Least important to these are the barriers which may exist within the limits of any single basin, and which tend to prevent a free diffusion through its waters of species inhabiting any portion of it. In streams flowing southward, or across different parallels of latitude, the difference in climate becomes a matter of importance. The distribution of species is governed very largely by the temperature of the water. Each species has its range in this respect,—the free-swimming fishes, notably the trout, being most affected by it; the mud-loving or bottom fishes, like the catfishes, least. The latter can reach the cool bottoms in hot weather, or the warm bottoms in cold weather, thus keeping their own temperature more even than that of the surface of the water. Although water communication is perfectly free for most of the length of the Mississippi, there is a material difference between the faunæ of the stream in Minnesota and in Louisiana. This difference is caused chiefly by the difference in temperature occupying the difference in latitude. That a similar difference in longitude, with free water communication, has no appreciable importance, is shown by the almost absolute identity of the fish faunæ of Lake Winnebago and Lake Champlain. While many large fishes range freely up and down the Mississippi, a majority of the species do not do so, and the fauna of the upper Mississippi has more in common with that of the tributaries of Lake Michigan than it has with that of the Red River or the Arkansas. The influence of climate is again shown in the paucity of the fauna of the cold waters of Lake Superior, as compared with that of Lake Michigan. The majority of our species cannot endure the cold. In general, therefore, cold or Northern waters contain fewer species than Southern waters do, though the number of individuals of any one kind may be greater. This is shown in all waters, fresh or salt. The fisheries of the Northern seas are more extensive than those of the tropics. There are more fishes there, but are far less varied in kind. The writer once caught seventy-five species of fishes in a single haul of the seine at Key West, while on Cape Cod he obtained with the same net but forty-five species in the course of a week's work. Thus it comes that the angler, contented with many fishes of few kinds, goes to Northern streams to fish, while the naturalist goes to the South.
Fig. 190.—Peristedion miniatum Goode and Bean, a deep-red colored fish of the depths of the Gulf Stream.
But in most streams the difference in latitude is insignificant, and the chief differences in temperature come from differences in elevation, or from the distance of the waters from the colder source. Often the lowland waters are so different in character as to produce a marked change in the quality of their fauna. These lowland waters may form a barrier to the free movements of upland fishes; but that this barrier is not impassable is shown by the identity of the fishes in the streams[102] of the uplands of middle Tennessee with those of the Holston and French Broad. Again, streams of the Ozark Mountains, similar in character to the rivers of East Tennessee, have an essentially similar fish fauna, although between the Ozarks and the Cumberland range lies an area of lowland bayous, into which such fishes are never known to penetrate. We can, however, imagine that these upland fishes may be sometimes swept down from one side or the other into the Mississippi, from which they might ascend on the other side. But such transfers certainly do not often happen. This is apparent from the fact that the two faunas[103] are not quite identical, and in some cases the same species are represented by perceptibly different varieties on one side and the other. The time of the commingling of these faunæ is perhaps now past, and it may have occurred only when the climate of the intervening regions was colder than at present.