"Now, a morphological classification is a statement of these gradations of likeness which are observable in animal structures, and its objects and uses are manifold. In the first place, it strives to throw our knowledge of the facts which underlie, and are the cause of, the similarities discerned into the fewest possible general propositions, subordinated to one another, according to their greater or less degree of generality; and in this way it answers the purpose of a memoria technica, without which the mind would be incompetent to grasp and retain the multifarious details of anatomical science."

Coues on Classification.—It is obvious that fishes like other animals may be classified in numberless ways, and as a matter of fact by numberless men they have been classified in all sorts of fashions. "Systems," again quoting from Dr. Coues, "have been based on this and that set of characters and erected from this or that preconception in the mind of the systematist.... The mental point of view was that every species of bird (or of fish) was a separate creature, and as much of a fixture in nature's museum as any specimen in a naturalist's cabinet. Crops of classifications have been sown in the fruitful soil of such blind error, but no lasting harvest has been reaped.... The genius of modern taxonomy seems to be so certainly right, to be tending so surely even if slowly in the direction of the desired consummation, that all differences of opinion we hope will soon be settled, and defect of knowledge, not perversity of mind, is the only obstacle in the way of success. The taxonomic goal is not now to find the way in which birds (or other animals) may be most conveniently arranged, but to discover their pedigree, and so construct their family tree. Such a genealogical table, or phylum (φῦλον, tribe, race, stock), as it is called, is rightly considered the only taxonomy worthy the name—the only true or natural classification. In attempting this end, we proceed upon the belief that, as explained above, all birds, like all other animals and plants, are related to each other genetically, as offspring are to parents, and that to discover their generic relations is to bring out their true affinities—in other words, to reconstruct the actual taxonomy of nature. In this view there can be but one 'natural' classification, to the perfecting of which all increase in our knowledge of the structure of birds infallibly and inevitably tends. The classification now in use or coming into use is the result of our best endeavors to accomplish this purpose, and represents what approach we have made to this end. It is one of the great corollaries of that theorem of evolution which most naturalists are satisfied has been demonstrated. It is necessarily a morphological classification; that is, one based solely upon considerations of structure or form (μορφή, form, morphe), and for the following reasons: Every offspring tends to take on precisely the form or structure of its parents, as its natural physical heritage; and the principle involved, or the law of heredity, would, if nothing interfered, keep the descendants perfectly true to the physical characters of their progenitors; they would 'breed true' and be exactly alike. But counter influences are incessantly operative, in consequence of constantly varying external conditions of environment; the plasticity of organization of all creatures rendering them more or less susceptible of modifications by such means, they become unlike their ancestors in various ways and to different degrees. On a large scale is thus accomplished, by natural selection and other natural agencies, just what man does in a small way in producing and maintaining different breeds of domestic animals. Obviously, amidst such ceaselessly shifting scenes, degrees of likeness or unlikeness of physical structure indicate with the greatest exactitude the nearness or remoteness of organisms in kinship. Morphological characters derived from the examination of structure are therefore the surest guides we can have to the blood relationships we desire to establish; and such relationships are the 'natural affinities' which all classification aims to discover and formulate."

Species as Twigs of a Genealogical Tree.—In another essay Dr. Coues has compared species of animals to "the twigs of a tree separated from the parent stem. We name and arrange them arbitrarily in default of a means of reconstructing the whole tree according to nature's ramifications." If one had a tree, all in fragments, pieces of twig and stem, some of them lost, some destroyed, and some not yet separated from the mass not yet picked over, and wished to place each part where he could find it, he would be forced to adopt some system of natural classification. In such a scheme he would lay those parts together which grew from the same branch. If he were compelled to arrange all the fragments in a linear series, he would place together those of one branch, and when these were finished he would begin with another. If all this were a matter of great importance and extending over years or over many lifetimes, with many errors to be made and corrected, a set of names would be adopted—for the main trunk, for the chief branches, the lesser branches, and on down to the twigs and buds.

A task of this sort on a world-wide scale is the problem of systematic zoology. There is reason to believe that all animals and plants sprang from a single stock. There is reasonable certainty that all vertebrate animals are derived from a single origin. These vertebrate animals stand related to each other, like the twigs of a gigantic tree of which the lowermost branches are the aquatic forms to which we give the name of fishes. The fishes are here regarded as composed of six classes or larger lines of descent. Each of these, again, is composed of minor divisions called orders. The different species or ultimate kinds of animals are grouped in genera. A genus is an assemblage of closely related species grouped around a central species as type. The type of a genus is, in common usage, that species with which the name of the genus was first associated. The name of the genus as a noun, often with that of the species which is an adjective in signification if not in form, constitutes the scientific name of the species. Thus Petromyzon is the genus of the common large lamprey, marinus is its species, and the scientific name of the species is Petromyzon marinus. Petromyzon means stone-sucker; marinus, of the sea, thus distinguishing it from a species called fluviatilis, of the river. In like fashion all animals and plants are named in scientific record or taxonomy. Technical names are necessary because vernacular names fail. Half a million kinds of animals are known, while not half a thousand vernacular names exist in any language. And these are always loosely used, half a dozen of them often for the same species, one name often for a dozen species.

In the same way, whenever we undertake an exact description, we must use names especially devised for that purpose. We cannot use the same names for the bones of the head of a fish and those of the head of a man, for a fish has a different series of bones, and this series is different with different fishes.

Nomenclature.—A family in zoology is an assemblage of related genera. The name of a family, for convenience, always ends in the patronymic idæ, and it is always derived from the leading genus, that is, the one best known or earliest studied. Thus all lampreys constitute the family Petromyzonidæ. An order may contain one or more families. An order is a division of a larger group; a family an assemblage of related smaller groups. Intermediate groups are often recognized by the prefixes sub or super. A subgenus is a division of a genus. A subspecies is a geographic race or variation within a species; a super-family a group of allied families. Binomial nomenclature, or the use of the name of genus and species as a scientific name, was introduced into science as a systematic method by Linnæus. In the tenth edition of his Systema Naturæ, published in 1758, this method was first consistently applied to animals. By common consent the scientific naming of animals begins with this year, and no account is taken of names given earlier, as these are, except by accident, never binomial. Those authors who wrote before the adoption of the rule of binomials and those who neglected it are alike "ruled out of court." The idea of genus and species was well understood before Linnæus, but the specific name used was not one word but a descriptive phrase, and this phrase was changed at the whim of the different authors.

Fig. 239.—Horned Trunkfish, Cowfish, or Cuckold, Lactophrys tricornis (Linnæus). Charleston, S. C.

Nomenclature of Trunkfishes.—Examples of such names are those of the West Indian trunkfish, or cuckold (Ostracion tricorne, Linnæus). Lister refers to a specimen in 1686 as "Piscis triangularis capiti cornutu cui e media cauda cutanea aculeus longus erigitus." This Artedi alters in 1738 to Ostracion triangulatus aculeis duobus in capite et unico longiore superne ad caudam. This is more accurately descriptive and it recognizes the existence of a generic type, Ostracion, or trunkfish, to cover all similar fishes. French writers transformed this into various phrases beginning "Coffre triangulaire à trois cornes," or some similar descriptive epithet, and in English or German it was likely to wander still farther from the original. But Linnæus condenses it all in the word tricornis, which, although not fully descriptive, is still a name which all future observers can use and recognize.