[CHAPTER XXXI]
THE HOLOCEPHALI, OR CHIMÆRAS

The Chimæras.—Very early in geological times, certainly as early as the middle Silurian, the type of Chimæras diverged from that of the sharks. Hasse derives them directly from his hypothetical primitive Polyospondyli, by way of the Acanthodei and Ichthyotomi. In any event the point of divergence must be placed very early in the evolution of sharks, and this suggestion is as likely as any other. The chief character of Chimæras is found in the autostylic skull, which is quite different from the hyostylic skull of the sharks. In the sharks and in all higher fishes the mandible is joined to the skull by a suspensorium of bones or cartilages (quadrate, symplectic, and hyomandibular bones in the Teleost fishes). To this arrangement the name hyostylic is given. In the Chimæra there is no suspensorium, the mandible being directly attached to the cranium, of which the hyomandibular and quadrate elements form an integral part, this arrangement being called autostylic. The palato-quadrate apparatus, of which the upper jaw is the anterior part, is immovably fused with the cranium, instead of being articulated with it. This fact, gives the name to the subclass Holocephali (ὅλος, whole or solid; κεφαλή, head). Other characters are found in the incomplete character of the back-bone, which consists of a scarcely segmented notochord differing from the most primitive condition imagined only in being surrounded by calcareous rings, no lime entering into the composition of the notochord itself. The tail is diphycercal and usually prolonged in a filament (leptocercal). The shoulder-girdle, as in the sharks, is free from the skull. The pectoral fins are short and broad, without segmented axis or archipterygium and without recognizable analogue of the three large cartilages seen in the sharks, the propterygium, mesopterygium, and metapterygium. In the mouth, instead of teeth, are developed flat, bony plates called tritors or grinders, set endwise in the front of the jaws. The gills are fringe-like, free at the tips as in ordinary fishes, and there is a single external opening for them all as in true fishes, and they are covered with a flap of skin. These structures are, however, quite different from those of the true fishes and are doubtless independently developed. There is no spiracle. The skin is smooth or rough. In the living forms and most of the extinct species there is a strong spine in the dorsal fin. The ventral fin in the male has complex, usually trifid, claspers, and an analogous organ, the cephalic holder, is developed on the front of the head, in the adult male. This is a bony hook with a brush of glistening enameled teeth at the end. The eggs are large, and laid in oblong or elliptical egg-cases, provided with silky filaments. The eggs are fertilized after they are extruded. Mucous channels and lateral line are highly developed, being most complex about the head. The brain is essentially shark-like, the optic nerves form a chiasma, and the central hemispheres are large.

The teeth of the Chimæras are thus described by Woodward, vol. 2, pp. 36, 37:

"In all the known families of Chimæroids, the dentition consists of a few large plates of vascular dentine, of which certain areas ('tritors') are specially hardened by the deposition of calcareous salts within and around groups of medullary canals, which rise at right angles to the functional surface. In most cases there is a single pair of such plates in the lower jaw, meeting at the symphysis, while two pairs are arranged to oppose these above. As a whole, the dentition thus closely resembles that of the typical Dipnoi (as has often been pointed out); and the upper teeth may be provisionally named palatine and vomerine until further discoveries shall have revealed their precise homologies. The structures are sometimes described as 'jaws,' and regarded as dentaries, maxillæ, and premaxillæ, but the presence of a permanent pulp under each tooth is conclusive proof of their bearing no relation to the familiar membrane-bones thus named in higher fishes."

Relationship of Chimæras.—As to the origin of the Chimæras and their relation to the sharks, Dr. Dean has this recent ("The Devonian Lamprey") and interesting word:

"The Holocephali have always been a doubtful group, anatomy and palæontology contributing but imperfect evidence as to their position in the gnathostome phylum. Their embryology, however, is still undescribed, except in a brief note by T. J. Parker, and it is reasonably looked to to contribute evidence as to their line of descent. The problem of the relationships of the Chimæroids has long been of especial interest to me, and it has led me to obtain embryonic material of a Pacific species of one of these forms. It may be of interest in this connection to state that the embryology of this form gives the clearest evidence that the wide separation of the Selachii and Holocephali is not tenable. The entire plan of development in Chimæra colliei is clearly like that of a shark. The ovulation is closely like that of certain of the rays and sharks: the eggs are large, the segmentation is distinctly shark-like; the circular blastoderm overgrows the yolk in an elasmobranchian manner. The early embryos are shark-like; and the later ones have, as T. J. Parker has shown, external gills, and I note further that these arise, precisely as in shark-embryos, from the posterior margin of the gill-bar. A spiracle also is present. A further and most interesting developmental feature is the fact that the autostylism in Chimæra is purely of secondary nature and is at the most of ordinal value. It is found that in a larva of Chimæra measuring 45 mm. in length, the palato-quadrate cartilage is still separated from the skull by a wide fissure. This becomes gradually reduced by the confluence of the palato-quadrate cartilage with the skull, the fusion taking place at both the anterior and posterior ends of the mesal rim of the cartilage. The remains of the fissure are still well marked in the young Chimæra, four inches in length; and a rudiment of it is present in the adult skull as a passage-way for a nerve. Regarding the dentition: it may also be noted in the present connection that the growth of the dental plates in Chimæra suggests distinctly elasmobranchian conditions. Thus on the roof of the mouth the palatine plates are early represented by a series of small more or less conical elements which resemble outwardly, at least, the 'anlagen' of the pavement teeth in cestraciont sharks."