The name Ganoidei (γάνος, brightness; εἶδος, resemblance), alluding to the enameled plates, was first given by Agassiz to those forms, mostly extinct, which were covered with bony scales or hard plates of one sort or another. As the term was originally defined, mailed catfishes, sea-horses, Agonidæ, Arthrodires, Ostracophores, and other wholly unrelated types were included with the garpikes and sturgeons as Ganoids. Most of these intruding forms among living fishes were eliminated by Johannes Müller, who recognized the various archaic characters common to the existing forms after the removal of the mailed Teleosts. Still later Huxley separated the Crossopterygians as a distinct group, while others have shown that the Ostracophori and Arthrodira should be placed far from the garpike in systematic classification. Cope, Woodward, Hay, and others have dropped the name Ganoid altogether as productive of confusion through the many meanings attached to it. Others have kept it as a convenient group name for the orders of archaic Actinopteri. For these varied and more or less divergent forms it seems convenient to retain it. As an adjective "ganoid" is sometimes used as descriptive of bony plates or enameled scales, some-in the sense of archaic, as applied to fishes.

Are the Ganoids a Natural Group?—Several writers have urged that the Ganoidei, even as thus restricted, should not be considered as a natural group, whether subclass, order, or group of orders. The reasons for this view in brief are the following:

1. The group is heterogeneous. The Amiidæ differ more from the other Ganoids than they do from the herring-like Teleosts. The garpikes, sturgeons, paddle-fishes likewise diverge widely from each other and from the Palæoniscidæ and the Platysomidæ. Each of the living families represents the residue or culmination of a long series, in some cases advancing, as in the case of the bowfin, sometimes perhaps degenerating, as in the case of the sturgeons.

2. Of the traits possessed in common by these forms, several (the cellular air-bladder, the many valves in the heart, the spiral valve in the intestine, the heterocercal tail) are all possessed in greater or less degree by certain Isospondyli or allies of the herring. All these characters are still better developed in Crossoptergyii and Dipneusti, and each one disappears by degrees. Of the characters drawn from the soft parts we can know nothing so far as the extinct Ganoids are concerned.

3. The optic chiasma, thus far characteristic of Ganoids as distinct from Teleosts, may have no great value. It is urged that in closely related species of lizards some have the optic chiasma and others do not. This, however, proves nothing as to the value of the same character among fishes.

4. The transition from Ganoids to Teleosts is of much the same character as the transition from spiny-rayed to soft-rayed fishes, or that from fishes with a duct to the air-bladder to those without such duct.

Admitting all this, it is nevertheless natural and convenient to retain the Ganoidei (or Chrondrostei if the older name be discarded on account of the many meanings attached to it) as a group equivalent to that of Teleostei within the class or subclass of Actinopteri. It comprises the transitional forms between the Crossopterygii and the bony fishes, and its members are especially characteristic of the Mesozoic age, ranging from the Devonian to the present era.

Of the extensive discussion relating to this important question we may quote two arguments for the retention of the subclass of Ganoids, the first by Francis M. Balfour and William Kitchen Parker, the second from the pen of Theodore Gill.

Balfour and Parker ("Structure and Development of Lepidosteus," pp. 430-433) thus discuss the

Systematic Position of Lepidosteus.—"Alexander Agassiz concludes his memoir on the development of Lepidosteus by pointing out that in spite of certain affinities in other directions this form is 'not so far removed from the bony fishes as has been supposed.' Our own observations go far to confirm Agassiz's opinion.