Fig. 19.

The form of hydrophore represented in [Fig. 19] is used in deep water, to which the small one just described is inapplicable. It consists of an egg-shaped vessel a, made of thick lead to give the apparatus weight, having two valves, b and c, one in the top and another in the bottom, both opening upwards; these valves (which are represented as open in the diagram) are, to insure more perfect fitting, fixed on separate spindles, which work in guides, in the same manner as in the instrument shown in [Fig. 18]. The valves, however, in this instrument are not opened by means of a cord, but by the impact of the projecting part, d, of the lower spindle on the bottom, when the hydrophore is sunk to that depth. By this means the lower valve is forced upwards, and the upper spindle (the lower extremity of which is made nearly to touch the upper extremity of the lower one, when the valves are shut) is at the same time forced up, carrying along with it the upper valve, which allows the air to escape, and the water rushing in fills the vessel. On raising the instrument from the bottom, both valves again shut by their own weight, and that of the mass of lead, d, which forms part of the lower spindle. The mode of using this hydrophore is sufficiently obvious; it is lowered by means of a rope, made fast to a ring at the top, as shown in [Fig. 19], until it strikes on the bottom, when the valves are opened in the manner described, and the vessel is filled; on raising it the valves close, and the vessel can be drawn to the surface without its contents being mixed with the superincumbent water through which it has to pass. This instrument, shown on a scale of one twentieth of full size, weighs about half a hundredweight, and has been easily used in from thirty to forty fathoms water.

* * * * *

Mr. Stevenson subsequently extended his experiments on the density of salt and fresh water to several firths and tidal rivers, and gave the results in a paper communicated to the Royal Society of Edinburgh in May 1817, of which the following digest is given in Thomson’s Annals of Philosophy:[14]

“The waters of the Thames opposite the London Dock gates were found to be perfectly fresh throughout; at Blackwall, even in spring tides, the water was found to be only slightly saline; at Woolwich the proportion of salt water increases, and so on to Gravesend. But the strata of salt and fresh water are less distinctly marked in the Thames than in any of those rivers on which Mr. Stevenson has hitherto had an opportunity of making his observations. But these inquiries are meant to be extended to most of the principal rivers in the kingdom, when an account of the whole will be given.

“From the series of observations made at and below London Bridge, compared with the river as far up as Kew and Oxford, Mr. Stevenson is of opinion that the waters of the Thames seldom change, but are probably carried up and down with the turn of the alternate tides for an indefinite period, which, he is of opinion, may be one, if not the principal cause of what is termed the extreme softness of the waters of the Thames.

“Mr. Stevenson has made similar experiments on the rivers Forth and Tay, and at Loch Eil, where the Caledonian Canal joins the Western Sea. The aperture at Corran Ferry, for the tidal waters of that Loch, being small compared with the surface of Loch Eil, which forms the drainage of a great extent of country, it occurred to him that the waters of the surface must have less saline particles than the waters of the bottom. He accordingly lifted water from the surface at the anchorage off Fort William, and found it to be 1008·2; at the depth of 9 fathoms 1025·5; at the depth of 30 fathoms, in the central parts of the Loch, it was 1027·2; being the specific gravity of sea water.”

The hydrophore, which was originally devised and used by Mr. Stevenson, in 1812, at Aberdeen, has now reached its height of excellence of construction and scientific importance in the famous ‘Challenger’ Expedition.