Fig. 11.

But I propose, in this Letter, to give you some account of the unwearied labors which have been performed to ascertain the exact figure of the earth; for although the earth is properly described in general language as round, yet it is not an exact sphere. Were it so, all its diameters would be equal; but it is known that a diameter drawn through the equator exceeds one drawn from pole to pole, giving to the earth the form of a spheroid,—a figure resembling an orange, where the ends are flattened a little and the central parts are swelled out.

Although it would be a matter of very rational curiosity, to investigate the precise shape of the planet on which Heaven has fixed our abode, yet the immense pains which has been bestowed on this subject has not all arisen from mere curiosity. No accurate measurements can be taken of the distances and magnitudes of the heavenly bodies, nor any exact determinations made of their motions, without a knowledge of the exact figure of the earth; and hence is derived a powerful motive for ascertaining this element with all possible precision.

The first satisfactory evidence that was obtained of the exact figure of the earth was derived from reasoning on the effects of the earth's centrifugal force, occasioned by its rapid revolution on its own axis. When water is whirled in a pail, we see it recede from the centre and accumulate upon the sides of the vessel; and when a millstone is whirled rapidly, since the portions of the stone furthest from the centre revolve much more rapidly than those near to it, their greater tendency to recede sometimes makes them fly off with a violent explosion. A case, which comes still nearer to that of the earth, is exhibited by a mass of clay revolving on a potter's wheel, as seen in the process of making earthen vessels. The mass swells out in the middle, in consequence of the centrifugal force exerted upon it by a rapid motion. Now, in the diurnal revolution, the equatorial parts of the earth move at the rate of about one thousand miles per hour, while the poles do not move at all; and since, as we take points at successive distances from the equator towards the pole, the rate at which these points move grows constantly less and less; and since, in revolving bodies, the centrifugal force is proportioned to the velocity, consequently, those parts which move with the greatest rapidity will be more affected by this force than those which move more slowly. Hence, the equatorial regions must be higher from the centre than the polar regions; for, were not this the case, the waters on the surface of the earth would be thrown towards the equator, and be piled up there, just as water is accumulated on the sides of a pail when made to revolve rapidly.

Huyghens, an eminent astronomer of Holland, who investigated the laws of centrifugal forces, was the first to infer that such must be the actual shape of the earth; but to Sir Isaac Newton we owe the full developement of this doctrine. By combining the reasoning derived from the known laws of the centrifugal force with arguments derived from the principles of universal gravitation, he concluded that the distance through the earth, in the direction of the equator, is greater than that in the direction of the poles. He estimated the difference to be about thirty-four miles.

But it was soon afterwards determined by the astronomers of France, to ascertain the figure of the earth by actual measurements, specially instituted for that purpose. Let us see how this could be effected. If we set out at the equator and travel towards the pole, it is easy to see when we have advanced one degree of latitude, for this will be indicated by the rising of the north star, which appears in the horizon when the spectator stands on the equator, but rises in the same proportion as he recedes from the equator, until, on reaching the pole, the north star would be seen directly over head. Now, were the earth a perfect sphere, the meridian of the earth would be a perfect circle, and the distance between any two places, differing one degree in latitude, would be exactly equal to the distance between any other two places, differing in latitude to the same amount. But if the earth be a spheroid, flattened at the poles, then a line encompassing the earth from north to south, constituting the terrestrial meridian, would not be a perfect circle, but an ellipse or oval, having its longer diameter through the equator, and its shorter through the poles. The part of this curve included between two radii, drawn from the centre of the earth to the celestial meridian, at angles one degree asunder, would be greater in the polar than in the equatorial region; that is, the degrees of the meridian would lengthen towards the poles.

The French astronomers, therefore, undertook to ascertain by actual measurements of arcs of the meridian, in different latitudes, whether the degrees of the meridian are of uniform length, or, if not, in what manner they differ from each other. After several indecisive measurements of an arc of the meridian in France, it was determined to effect simultaneous measurements of arcs of the meridian near the equator, and as near as possible to the north pole, presuming that if degrees of the meridian, in different latitudes, are really of different lengths, they will differ most in points most distant from each other. Accordingly, in 1735, the French Academy, aided by the government, sent out two expeditions, one to Peru and the other to Lapland. Three distinguished mathematicians, Bouguer, La Condamine, and Godin, were despatched to the former place, and four others, Maupertius, Camus, Clairault, and Lemonier, were sent to the part of Swedish Lapland which lies at the head of the Gulf of Tornea, the northern arm of the Baltic. This commission completed its operations several years sooner than the other, which met with greater difficulties in the way of their enterprise. Still, the northern detachment had great obstacles to contend with, arising particularly from the extreme length and severity of their Winters. The measurements, however, were conducted with care and skill, and the result, when compared with that obtained for the length of a degree in France, plainly indicated, by its greater amount, a compression of the earth towards the poles.

Mean-while, Bouguer and his party were prosecuting a similar work in Peru, under extraordinary difficulties. These were caused, partly by the localities, and partly by the ill-will and indolence of the inhabitants. The place selected for their operations was in an elevated valley between two principal chains of the Andes. The lowest point of their arc was at an elevation of a mile and a half above the level of the sea; and, in some instances, the heights of two neighboring signals differed more than a mile. Encamped upon lofty mountains, they had to struggle against storms, cold, and privations of every description, while the invincible indifference of the Indians, they were forced to employ, was not to be shaken by the fear of punishment or the hope of reward. Yet, by patience and ingenuity, they overcame all obstacles, and executed with great accuracy one of the most important operations, of this nature, ever undertaken. To accomplish this, however, took them nine years; of which, three were occupied in determining the latitudes alone.[5]

I have recited the foregoing facts, in order to give you some idea of the unwearied pains which astronomers have taken to ascertain the exact figure of the earth. You will find, indeed, that all their labors are characterized by the same love of accuracy. Years of toilsome watchings, and incredible labor of computation, have been undergone, for the sake of arriving only a few seconds nearer to the truth.