Beside the change of place which these heavenly bodies undergo, in consequence of parallax, there is another, of an opposite kind, arising from the effect of the atmosphere, called refraction. Refraction elevates the apparent place of a body, while parallax depresses it. It affects alike the most distant as well as nearer bodies.
In order to understand the nature of refraction, we must consider, that an object always appears in the direction in which the last ray of light comes to the eye. If the light which comes from a star were bent into fifty directions before it reached the eye, the star would nevertheless appear in the line described by the ray nearest the eye. The operation of this principle is seen when an oar, or any stick, is thrust into water. As the rays of light by which the oar is seen have their direction changed as they pass out of water into air, the apparent direction in which the body is seen is changed in the same degree, giving it a bent appearance,—the part below the water having apparently a different direction from the part above. Thus, in Fig. 22, page 96, if S a x be the oar, S a b will be the bent appearance, as affected by refraction. The transparent substance through which any ray of light passes is called a medium. It is a general fact in optics, that, when light passes out of a rarer into a denser medium, as out of air into water, or out of space into air, it is turned towards a perpendicular to the surface of the medium; and when it passes out of a denser into a rarer medium, as out of water into air, it is turned from the perpendicular. In the above case, the light, passing out of space into air, is turned towards the radius of the earth, this being perpendicular to the surface of the atmosphere; and it is turned more and more towards that radius the nearer it approaches to the earth, because the density of the air rapidly increases near the earth.
Fig. 22.
Let us now conceive of the atmosphere as made up of a great number of parallel strata, as A A, B B, C C, and D D, increasing rapidly in density (as is known to be the fact) in approaching near to the surface of the earth. Let S be a star, from which a ray of light, S a, enters the atmosphere at a, where, being much turned towards the radius of the convex surface, it would change its direction into the line a b, and again into b c, and c O, reaching the eye at O. Now, since an object always appears in the direction in which the light finally strikes the eye, the star would be seen in the direction O c, and, consequently, the star would apparently change its place, by refraction, from S to S´, being elevated out of its true position. Moreover, since, on account of the continual increase of density in descending through the atmosphere, the light would be continually turned out of its course more and more, it would therefore move, not in the polygon represented in the figure, but in a corresponding curve line, whose curvature is rapidly increased near the surface of the earth.
When a body is in the zenith, since a ray of light from it enters the atmosphere at right angles to the refracting medium, it suffers no refraction. Consequently, the position of the heavenly bodies, when in the zenith, is not changed by refraction, while, near the horizon, where a ray of light strikes the medium very obliquely, and traverses the atmosphere through its densest part, the refraction is greatest. The whole amount of refraction, when a body is in the horizon, is thirty-four minutes; while, at only an elevation of one degree, the refraction is but twenty-four minutes; and at forty-five degrees, it is scarcely a single minute. Hence it is always important to make our observations on the heavenly bodies when they are at as great an elevation as possible above the horizon, being then less affected by refraction than at lower altitudes.
Since the whole amount of refraction near the horizon exceeds thirty-three minutes, and the diameters of the sun and moon are severally less than this, these luminaries are in view both before they have actually risen and after they have set.
The rapid increase of refraction near the horizon is strikingly evinced by the oval figure which the sun assumes when near the horizon, and which is seen to the greatest advantage when light clouds enable us to view the solar disk. Were all parts of the sun equally raised by refraction, there would be no change of figure; but, since the lower side is more refracted than the upper, the effect is to shorten the vertical diameter, and thus to give the disk an oval form. This effect is particularly remarkable when the sun, at his rising or setting, is observed from the top of a mountain, or at an elevation near the seashore; for in such situations, the rays of light make a greater angle than ordinary with a perpendicular to the refracting medium, and the amount of refraction is proportionally greater. In some cases of this kind, the shortening of the vertical diameter of the sun has been observed to amount to six minutes, or about one fifth of the whole.
The apparent enlargement of the sun and moon, when near the horizon, arises from an optical illusion. These bodies, in fact, are not seen under so great an angle when in the horizon as when on the meridian, for they are nearer to us in the latter case than in the former. The distance of the sun, indeed, is so great, that it makes very little difference in his apparent diameter whether he is viewed in the horizon or on the meridian; but with the moon, the case is otherwise; its angular diameter, when measured with instruments, is perceptibly larger when at its culmination, or highest elevation above the horizon. Why, then, do the sun and moon appear so much larger when near the horizon? It is owing to a habit of the mind, by which we judge of the magnitudes of distant objects, not merely by the angle they subtend at the eye, but also by our impressions respecting their distance, allowing, under a given angle, a greater magnitude as we imagine the distance of a body to be greater. Now, on account of the numerous objects usually in sight between us and the sun, when he is near the horizon, he appears much further removed from us than when on the meridian; and we unconsciously assign to him a proportionally greater magnitude. If we view the sun, in the two positions, through a smoked glass, no such difference of size is observed; for here no objects are seen but the sun himself.
Twilight is another phenomenon depending on the agency of the earth's atmosphere. It is that illumination of the sky which takes place just before sunrise and which continues after sunset. It is owing partly to refraction, and partly to reflection, but mostly to the latter. While the sun is within eighteen degrees of the horizon, before it rises or after it sets, some portion of its light is conveyed to us, by means of numerous reflections from the atmosphere. At the equator, where the circles of daily motion are perpendicular to the horizon, the sun descends through eighteen degrees in an hour and twelve minutes. The light of day, therefore, declines rapidly, and as rapidly advances after daybreak in the morning. At the pole, a constant twilight is enjoyed while the sun is within eighteen degrees of the horizon, occupying nearly two thirds of the half year when the direct light of the sun is withdrawn, so that the progress from continual day to constant night is exceedingly gradual. To an inhabitant of an oblique sphere, the twilight is longer in proportion as the place is nearer the elevated pole.