The diameter of the sun is towards a million of miles; or, more exactly, it is eight hundred and eighty-five thousand miles. One hundred and twelve bodies as large as the earth, lying side by side, would be required to reach across the solar disk; and our ship, sailing at the same rate as before, would be ten years in passing over the same space. Immense as is the sun, we can readily understand why it appears no larger than it does, when we reflect, that its distance is still more vast. Even large objects on the earth, when seen on a distant eminence, or over a wide expanse of water, dwindle almost to a point. Could we approach nearer and nearer to the sun, it would constantly expand its volume, until finally it would fill the whole vault of heaven. We could, however, approach but little nearer to the sun without being consumed by the intensity of his heat. Whenever we come nearer to any fire, the heat rapidly increases, being four times as great at half the distance, and one hundred times as great at one tenth the distance. This fact is expressed by saying, that the heat increases as the square of the distance decreases. Our globe is situated at such a distance from the sun, as exactly suits the animal and vegetable kingdoms. Were it either much nearer or much more remote, they could not exist, constituted as they are. The intensity of the solar light also follows the same law. Consequently, were we nearer to the sun than we are, its blaze would be insufferable; or, were we much further off, the light would be too dim to serve all the purposes of vision.
The sun is one million four hundred thousand times as large as the earth; but its matter is not more than about one fourth as dense as that of the earth, being only a little heavier than water, while the average density of the earth is more than five times that of water. Still, on account of the immense magnitude of the sun, its entire quantity of matter is three hundred and fifty thousand times as great as that of the earth. Now, the force of gravity in a body is greater, in proportion as its quantity of matter is greater. Consequently, we might suppose, that the weight of a body (weight being nothing else than the measure of the force of gravity) would be increased in the same proportion; or, that a body, which weighs only one pound at the surface of the earth, would weigh three hundred and fifty thousand pounds at the sun. But we must consider, that the attraction exerted by any body is the same as though all the matter were concentrated in the centre. Thus, the attraction exerted by the earth and by the sun is the same as though the entire matter of each body were in its centre. Hence, on account of the vast dimensions of the sun, its surface is one hundred and twelve times further from its centre than the surface of the earth is from its centre; and, since the force of gravity diminishes as the square of the distance increases, that of the sun, exerted on bodies at its surface, is (so far as this cause operates) the square of one hundred and twelve, or twelve thousand five hundred and forty-four times less than that of the earth. If, therefore, we increase the weight of a body three hundred and fifty-four thousand times, in consequence of the greater amount of matter in the sun, and diminish it twelve thousand five hundred and forty-four times, in consequence of the force acting at a greater distance from the body, we shall find that the body would weigh about twenty-eight times more on the sun than on the earth. Hence, a man weighing three hundred pounds would, if conveyed to the surface of the sun, weigh eight thousand four hundred pounds, or nearly three tons and three quarters. A limb of our bodies, weighing forty pounds, would require to lift it a force of one thousand one hundred and twenty pounds, which would be beyond the ordinary power of the muscles. At the surface of the earth, a body falls from rest by the force of gravity, in one second, sixteen and one twelfth feet; but at the surface of the sun, a body would, in the same time, fall through four hundred and forty-eight and seven tenths feet.
Fig. 23.
The sun turns on his own axis once in a little more than twenty-five days. This fact is known by observing certain dark places seen by the telescope on the sun's disk, called solar spots. These are very variable in size and number. Sometimes, the sun's disk, when viewed with a telescope, is quite free from spots, while at other times we may see a dozen or more distinct clusters, each containing a great number of spots, some large and some very minute. Occasionally, a single spot is so large as to be visible to the naked eye, especially when the sun is near the horizon, and the glare of his light is taken off. One measured by Dr. Herschel was no less than fifty thousand miles in diameter. A solar spot usually consists of two parts, the nucleus and the umbra. The nucleus is black, of a very irregular shape, and is subject to great and sudden changes, both in form and size. Spots have sometimes seemed to burst asunder, and to project fragments in different directions. The umbra is a wide margin, of lighter shade, and is often of greater extent than the nucleus. The spots are usually confined to a zone extending across the central regions of the sun, not exceeding sixty degrees in breadth. Fig. 23 exhibits the appearance of the solar spots. As these spots have all a common motion from day to day, across the sun's disk; as they go off at one limb, and, after a certain interval, sometimes come on again on the opposite limb, it is inferred that this apparent motion is imparted to them by an actual revolution of the sun on his own axis. We know that the spots must be in contact, or very nearly so, at least, with the body of the sun, and cannot be bodies revolving around it, which are projected on the solar disk when they are between us and the sun; for, in that case, they would not be so long in view as out of view, as will be evident from inspecting the following diagram. Let S, Fig. 24, page 106, represent the sun, and b a body revolving round it in the orbit a b c; and let E represent the earth, where, of course, the spectator is situated. The body would be seen projected on the sun only while passing from b to c, while, throughout the remainder of its orbit, it would be out of view, whereas no such inequality exists in respect to the two periods.
Fig. 24.
If you ask, what is the cause of the solar spots, I can only tell you what different astronomers have supposed respecting them. They attracted the notice of Galileo soon after the invention of the telescope, and he formed an hypothesis respecting their nature. Supposing the sun to consist of a solid body embosomed in a sea of liquid fire, he believed that the spots are composed of black cinders, formed in the interior of the sun by volcanic action, which rise and float on the surface of the fiery sea. The chief objections to this hypothesis are, first, the vast extent of some of the spots, covering, as they do, two thousand millions of square miles, or more,—a space which it is incredible should be filled by lava in so short a time as that in which the spots are sometimes formed; and, secondly, the sudden disappearance which the spots sometimes undergo, a fact which can hardly be accounted for by supposing, as Galileo did, that such a vast accumulation of matter all at once sunk beneath the fiery flood. Moreover, we have many reasons for believing that the spots are depressions below the general surface.
La Lande, an eminent French astronomer of the last century, held that the sun is a solid, opaque body, having its exterior diversified with high mountains and deep valleys, and covered all over with a burning sea of liquid matter. The spots he supposed to be produced by the flux and reflux of this fiery sea, retreating occasionally from the mountains, and exposing to view a portion of the dark body of the sun. But it is inconsistent with the nature of fluids, that a liquid, like the sea supposed, should depart so far from its equilibrium and remain so long fixed, as to lay bare the immense spaces occupied by some of the solar spots.
Dr. Herschel's views respecting the nature and constitution of the sun, embracing an explanation of the solar spots, have, of late years, been very generally received by the astronomical world. This great astronomer, after attentively viewing the surface of the sun, for a long time, with his large telescopes, came to the following conclusions respecting the nature of this luminary. He supposes the sun to be a planetary body like our earth, diversified with mountains and valleys, to which, on account of the magnitude of the sun, he assigns a prodigious extent, some of the mountains being six hundred miles high, and the valleys proportionally deep. He employs in his explanation no volcanic fires, but supposes two separate regions of dense clouds floating in the solar atmosphere, at different distances from the sun. The exterior stratum of clouds he considers as the depository of the sun's light and heat, while the inferior stratum serves as an awning or screen to the body of the sun itself, which thus becomes fitted to be the residence of animals. The proofs offered in support of this hypothesis are chiefly the following: first, that the appearances, as presented to the telescope, are such as accord better with the idea that the fluctuations arise from the motions of clouds, than that they are owing to the agitations of a liquid, which could not depart far enough from its general level to enable us to see its waves at so great a distance, where a line forty miles in length would subtend an angle at the eye of only the tenth part of a second; secondly, that, since clouds are easily dispersed to any extent, the great dimensions which the solar spots occasionally exhibit are more consistent with this than with any other hypothesis; and, finally, that a lower stratum of clouds, similar to those of our atmosphere, was frequently seen by the Doctor, far below the luminous clouds which are the fountains of light and heat.