When the sun is at the northern tropic, which happens about the twenty-first of June, his elevation above the southern horizon at noon is the greatest in the year; and when he is at the southern tropic, about the twenty-first of December, his elevation at noon is the least in the year. The difference between these two meridian altitudes will give the whole distance from one tropic to the other, and consequently, twice the distance from each tropic to the equator. By this means, we find how far the tropic is from the equator, and that gives us the angle which the equator and ecliptic make with each other; for the greatest distance between any two great circles on the sphere is always equal to the angle which they make with each other. Thus, the ancient astronomers were able to determine the obliquity of the ecliptic with a great degree of accuracy. It was easy to find the situation of the zenith, because the direction of a plumb-line shows us where that is; and it was easy to find the distances from the zenith where the sun was at the greatest and least distances; respectively. The difference of these two arcs is the angular distance from one tropic to the other; and half this arc is the distance of either tropic from the equator, and of course, equal to the obliquity of the ecliptic. All this will be very easily understood from the annexed diagram, Fig. 26. Let Z be the zenith of a spectator situated at C; Z n the least, and Z s the greatest distance of the sun from the zenith. From Z s subtract Z n, and then s n, the difference, divided by two, will give the obliquity of the ecliptic.
Fig. 26.
The motion of the earth in its orbit is nearly seventy times as great as its greatest motion around its axis. In its revolution around the sun, the earth moves no less than one million six hundred and forty thousand miles per day, sixty-eight thousand miles per hour, eleven hundred miles per minute, and nearly nineteen miles every second; a velocity nearly sixty times as great as the greatest velocity of a cannon ball. Places on the earth turn with very different degrees of velocity in different latitudes. Those near the equator are carried round on the circumference of a large circle; those towards the poles, on the circumference of a small circle; while one standing on the pole itself would not turn at all. Those who live on the equator are carried about one thousand miles an hour. In our latitude, (forty-one degrees and eighteen minutes,) the diurnal velocity is about seven hundred and fifty miles per hour. It would seem, at first view, quite incredible, that we should be whirled round at so rapid a rate, and yet be entirely insensible of any motion; and much more, that we could be going so swiftly through space, in our circuit around the sun, while all things, when unaffected by local causes, appear to be in such a state of quiescence. Yet we have the most unquestionable evidence of the fact; nor is it difficult to account for it, in consistency with the general state of repose among bodies on the earth, when we reflect that their relative motions, with respect to each other, are not in the least disturbed by any motions which they may have in common. When we are on board a steam-boat, we move about in the same manner when the boat is in rapid motion, as when it is lying still; and such would be the case, if it moved steadily a hundred times faster than it does. Were the earth, however, suddenly to stop its diurnal revolution, all movable bodies on its surface would be thrown off in tangents to the surface with velocities proportional to that of their diurnal motion; and were the earth suddenly to halt in its orbit, we should be hurled forward into space with inconceivable rapidity.
I will next endeavor to explain to you the phenomena of the Seasons. These depend on two causes; first, the inclination of the earth's axis to the plane of its orbit; and, secondly, to the circumstance, that the axis always remains parallel to itself. Imagine to yourself a candle placed in the centre of a ring, to represent the sun in the centre of the earth's orbit, and an apple with a knittingneedle running through it in the direction of the stem. Run a knife around the central part of the apple, to mark the situation of the equator. The circumference of the ring represents the earth's orbit in the plane of the ecliptic. Place the apple so that the equator shall coincide with the wire; then the axis will lie directly across the plane of the ecliptic; that is, at right angles to it. Let the apple be carried quite round the ring, constantly preserving the axis parallel to itself, and the equator all the while coinciding with the wire that represents the orbit. Now, since the sun enlightens half the globe at once, so the candle, which here represents the sun, will shine on the half of the apple that is turned towards it; and the circle which divides the enlightened from the unenlightened side of the apple, called the terminator, will pass through both the poles. If the apple be turned slowly round on its axis, the terminator will successively pass over all places on the earth, giving the appearance of sunrise to places at which it arrives, and of sunset to places from which it departs. If, therefore, the equator had coincided with the ecliptic, as would have been the case, had the earth's axis been perpendicular to the plane of its orbit, the diurnal motion of the sun would always have been in the equator, and the days and nights would have been equal all over the globe. To the inhabitants of the equatorial parts of the earth, the sun would always have appeared to move in the prime vertical, rising directly in the east, passing through the zenith at noon, and setting in the west. In the polar regions, the sun would always have appeared to revolve in the horizon; while, at any place between the equator and the pole, the course of the sun would have been oblique to the horizon, but always oblique in the same degree. There would have been nothing of those agreeable vicissitudes of the seasons which we now enjoy; but some regions of the earth would have been crowned with perpetual spring, others would have been scorched with the unremitting fervor of a vertical sun, while extensive regions towards either pole would have been consigned to everlasting frost and sterility.
To understand, then, clearly, the causes of the change of seasons, use the same apparatus as before; but, instead of placing the axis of the earth at right angles to the plane of its orbit, turn it out of a perpendicular position a little, (twenty-three degrees and twenty-eight minutes,) then the equator will be turned just the same number of degrees out of a coincidence with the ecliptic. Let the apple be carried around the ring, always holding the axis inclined at the same angle to the plane of the ring, and always parallel to itself. You will find that there will be two points in the circuit where the plane of the equator, that you had marked around the centre of the apple, will pass through the centre of the sun; these will be the points where the celestial equator and the ecliptic cut one another, or the equinoxes. When the earth is at either of these points, the sun shines on both poles alike; and, if we conceive of the earth, while in this situation, as turning once round on its axis, the apparent diurnal motion of the sun will be the same as it would be, were the earth's axis perpendicular to the plane of the equator. For that day, the sun would revolve in the equator, and the days and nights would be equal all over the globe. If the apple were carried round in the manner supposed, then, at the distance of ninety degrees from the equinoxes, the same pole would be turned from the sun on one side, just as much as it was turned towards him on the other. In the former case, the sun's light would fall short of the pole twenty-three and one half degrees, and in the other case, it would reach beyond it the same number of degrees. I would recommend to you to obtain as clear an idea as you can of the cause of the change of seasons, by thinking over the foregoing illustration. You may then clear up any remaining difficulties, by studying the diagram, Fig. 27, on page 122.
Fig. 27.
Let A B C D represent the earth's place in different parts of its orbit, having the sun in the centre. Let A, C, be the positions of the earth at the equinoxes, and B, D, its positions at the tropics,—the axis n s being always parallel to itself. It is difficult to represent things of this kind correctly, all on the same plane; but you will readily see, that the figure of the earth, here, answers to the apple in the former illustration; that the hemisphere towards n is above, and that towards s is below, the plane of the paper. When the earth is at A and C, the Vernal and Autumnal equinoxes, the sun, you will perceive, shines on both the poles n and s; and, if you conceive of the globe, while in this position, as turned round on its axis, as it is in the diurnal revolution, you will readily understand, that the sun would describe the celestial equator. This may not at first appear so obvious, by inspecting the figure; but if you consider the point n as raised above the plane of the paper, and the point s as depressed below it, you will readily see how the plane of the equator would pass through the centre of the sun. Again, at B, when the earth is at the southern tropic, the sun shines twenty-three and a half degrees beyond the north pole, n, and falls the same distance short of the south pole, s. The case is exactly reversed when the earth is at the northern tropic, and the sun at the southern. While the earth is at one of the tropics, at B, for example, let us conceive of it as turning on its axis, and we shall readily see, that all that part of the earth which lies within the north polar circle will enjoy continual day, while that within the south polar circle will have continual night; and that all other places will have their days longer as they are nearer to the enlightened pole, and shorter as they are nearer to the unenlightened pole. This figure likewise shows the successive positions of the earth, at different periods of the year, with respect to the signs, and what months correspond to particular signs. Thus, the earth enters Libra, and the sun Aries, on the twenty-first of March, and on the twenty-first of June, the earth is just entering Capricorn, and the sun, Cancer. You will call to mind what is meant by this phraseology,—that by saying the earth enters Libra, we mean that a spectator placed on the sun would see the earth in that part of the celestial ecliptic, which is occupied by the sign Libra; and that a spectator on the earth sees the sun at the same time projected on the opposite part of the heavens, occupied by the sign Cancer.
Had the axis of the earth been perpendicular to the plane of the ecliptic, then the sun would always have appeared to move in the equator, the days would every where have been equal to the nights, and there could have been no change of seasons. On the other hand, had the inclination of the ecliptic to the equator been much greater than it is, the vicissitudes of the seasons would have been proportionally greater, than at present. Suppose, for instance, the equator had been at right angles to the ecliptic, in which case, the poles of the earth would have been situated in the ecliptic itself; then, in different parts of the earth, the appearances would have been as follows: To a spectator on the equator, (where all the circles of diurnal revolution are perpendicular to the horizon,) the sun, as he left the vernal equinox, would every day perform his diurnal revolution in a smaller and smaller circle, until he reached the north pole, when he would halt for a moment, and then wheel about and return to the equator, in a reverse order. The progress of the sun through the southern signs, to the south pole, would be similar to that already described. Such would be the appearances to an inhabitant of the equatorial regions. To a spectator living in an oblique sphere, in our own latitude, for example, the sun, while north of the equator, would advance continually northward, making his diurnal circuit in parallels further and further distant from the equator, until he reached the circle of perpetual apparition; after which, he would climb, by a spiral course, to the north star, and then as rapidly return to the equator. By a similar progress southward, the sun would at length pass the circle of perpetual occultation, and for some time (which would be longer or shorter, according to the latitude of the place of observation) there would be continual night. To a spectator on the pole of the earth and under the pole of the heaven, during the long day of six months, the sun would wind its way to a point directly over head, pouring down upon the earth beneath not merely the heat of the torrid zone, but the heat of a torrid noon, accumulating without intermission.