Fig. 31.

We have thus far taken the earth's orbit around the sun as a great circle, such being its projection on the sphere constituting the celestial ecliptic. The real path of the earth around the sun is learned, as I before explained to you, by the apparent path of the sun around the earth once a year. Now, when a body revolves about the earth at a great distance from us, as is the case with the sun and moon, we cannot certainly infer that it moves in a circle because it appears to describe a circle on the face of the sky, for such might be the appearance of its orbit, were it ever so irregular a curve. Thus, if E, Fig. 31, represents the earth, and ACB, the irregular path of a body revolving about it, since we should refer the body continually to some place on the celestial sphere, XYZ, determined by lines drawn from the eye to the concave sphere through the body, the body, while moving from A to B through C, would appear to move from X to Z, through Y. Hence, we must determine from other circumstances than the actual appearance, what is the true figure of the orbit.

Fig. 32.

Were the earth's path a circle, having the sun in the centre, the sun would always appear to be at the same distance from us; that is, the radius of the orbit, or radius vector, (the name given to a line drawn from the centre of the sun to the orbit of any planet,) would always be of the same length. But the earth's distance from the sun is constantly varying, which shows that its orbit is not a circle. We learn the true figure of the orbit, by ascertaining the relative distances of the earth from the sun, at various periods of the year. These distances all being laid down in a diagram, according to their respective lengths, the extremities, on being connected, give us our first idea of the shape of the orbit, which appears of an oval form, and at least resembles an ellipse; and, on further trial, we find that it has the properties of an ellipse. Thus, let E, Fig. 32, be the place of the earth, and a, b, c, &c., successive positions of the sun; the relative lengths of the lines E a, E b, &c., being known, on connecting the points a, b, c, &c., the resulting figure indicates the true figure of the earth's orbit.

These relative distances are found in two different ways; first, by changes in the sun's apparent diameter, and, secondly, by variations in his angular velocity. The same object appears to us smaller in proportion as it is more distant; and if we see a heavenly body varying in size, at different times, we infer that it is at different distances from us; that when largest, it is nearest to us, and when smallest, furthest off. Now, when the sun's diameter is accurately measured by instruments, it is found to vary from day to day; being, when greatest, more than thirty-two minutes and a half, and when smallest, only thirty-one minutes and a half,—differing, in all, about seventy-five seconds. When the diameter is greatest, which happens in January, we know that the sun is nearest to us; and when the diameter is least, which occurs in July, we infer that the sun is at the greatest distance from us. The point where the earth, or any planet, in its revolution, is nearest the sun, is called its perihelion; the point where it is furthest from the sun, its aphelion. Suppose, then, that, about the first of January, when the diameter of the sun is greatest, we draw a line, E a, Fig. 32, to represent it, and afterwards, every ten days, draw other lines, E b, E c, &c.; increasing in the same ratio as the apparent diameters of the sun decrease. These lines must be drawn at such a distance from each other, that the triangles, E a b, E b c, &c., shall be all equal to each other, for a reason that will be explained hereafter. On connecting the extremities of these lines, we shall obtain the figure of the earth's orbit.

Similar conclusions may be drawn from observations on the sun's angular velocity. A body appears to move most rapidly when nearest to us. Indeed, the apparent velocity increases rapidly, as it approaches us, and as rapidly diminishes, when it recedes from us. If it comes twice as near as before, it appears to move not merely twice as swiftly, but four times as swiftly; if it comes ten times nearer, its apparent velocity is one hundred times as great as before. We say, therefore, that the velocity varies inversely as the square of the distance; for, as the distance is diminished ten times, the velocity is increased the square of ten; that is, one hundred times. Now, by noting the time it takes the sun, from day to day, to cross the central wire of the transit-instrument, we learn the comparative velocities with which it moves at different times; and from these we derive the comparative distances of the sun at the corresponding times; and laying down these relative distances in a diagram, as before, we get our first notions of the actual figure of the earth's orbit, or the path which it describes in its annual revolution around the sun.

Having now learned the fact, that the earth moves around the sun, not in a circular but in an elliptical orbit, you will desire to know by what forces it is impelled, to make it describe this figure, with such uniformity and constancy, from age to age. It is commonly said, that gravity causes the earth and the planets to circulate around the sun; and it is true that it is gravity which turns them aside from the straight line in which, by the first law of motion, they tend to move, and thus causes them to revolve around the sun. But what force is that which gave to them this original impulse, and impressed upon them such a tendency to move forward in a straight line? The name projectile force is given to it, because it is the same as though the earth were originally projected into space, when first created; and therefore its motion is the result of two forces, the projectile force, which would cause it to move forward in a straight line which is a tangent to its orbit, and gravitation, which bends it towards the sun. But before you can clearly understand the nature of this motion, and the action of the two forces that produce it, I must explain to you a few elementary principles upon which this and all the other planetary motions depend.

You have already learned, that when a body is acted on by two forces, in different directions, it moves in the direction of neither, but in some direction between them. If I throw a stone horizontally, the attraction of the earth will continually draw it downward, out of the line of direction in which it was thrown, and make it descend to the earth in a curve. The particular form of the curve will depend on the velocity with which it is thrown. It will always begin to move in the line of direction in which it is projected; but it will soon be turned from that line towards the earth. It will, however, continue nearer to the line of projection in proportion as the velocity of projection is greater. Thus, let A C, Fig. 33, be perpendicular to the horizon, and A B parallel to it, and let a stone be thrown from A, in the direction of A B. It will, in every case, commence its motion in the line A B, which will therefore be a tangent to the curve it describes; but, if it is thrown with a small velocity, it will soon depart from the tangent, describing the line A D; with a greater velocity, it will describe a curve nearer the tangent, as A E; and with a still greater velocity, it will describe the curve A F.