In a total eclipse of the moon, its disk is still visible, shining with a dull, red light. This light cannot be derived directly from the sun, since the view of the sun is completely hidden from the moon; nor by reflection from the earth, since the illuminated side of the earth is wholly turned from the moon; but it is owing to refraction from the earth's atmosphere, by which a few scattered rays of the sun are bent round into the earth's shadow and conveyed to the moon, sufficient in number to afford the feeble light in question.

It is impossible fully to understand the method of calculating eclipses, without a knowledge of trigonometry; still it is not difficult to form some general notion of the process. It may be readily conceived that, by long-continued observations on the sun and moon, the laws of their revolution may be so well understood, that the exact places which they will occupy in the heavens at any future times may be foreseen and laid down in tables of the sun and moon's motions; that we may thus ascertain, by inspecting the tables, the instant when these two bodies will be together in the heavens, or be in conjunction, and when they will be one hundred and eighty degrees apart, or in opposition. Moreover, since the exact place of the moon's node among the stars at any particular time is known to astronomers, it cannot be difficult to determine when the new or full moon occurs in the same part of the heavens as that where the node is projected, as seen from the earth. In short, as astronomers can easily determine what will be the relative position of the sun, the moon, and the moon's nodes, for any given time, they can tell when these luminaries will meet so near the node as to produce an eclipse of the sun, or when they will be in opposition so near the node as to produce an eclipse of the moon.

A little reflection will enable you to form a clear idea of the situation of the sun, the moon, and the earth, at the time of a solar eclipse. First, suppose the conjunction to take place at the node; that is, imagine the moon to come directly between the earth and the sun, as she will of course do, if she comes between the earth and the sun the moment she is crossing the ecliptic; for then the three bodies will all lie in one and the same straight line. But when the moon is in the ecliptic, her shadow, or at least the axis, or central line, of the shadow, must coincide with the line that joins the centres of the sun and earth, and reach along the plane of the ecliptic towards the earth. The moon's shadow, at her average distance from the earth, is just about long enough to reach the surface of the earth; but when the moon, at the new, is in her apogee, or at her greatest distance from the earth, the shadow is not long enough to reach the earth. On the contrary, when the moon is nearer to us than her average distance, her shadow is long enough to reach beyond the earth, extending, when the moon is in her perigee, more than fourteen thousand miles beyond the centre of the earth. Now, as during the eclipse the moon moves nearly in the plane of the ecliptic, her shadow which accompanies her must also move nearly in the same plane, and must therefore traverse the earth across its central regions, along the terrestrial ecliptic, since this is nothing more than the intersection of the plane of the celestial ecliptic with the earth's surface. The motion of the earth, too, on its axis, in the same direction, will carry a place along with the shadow, though with a less velocity by more than one half; so that the actual velocity of the shadow, in respect to places over which it passes on the earth, will only equal the difference between its own rate and that of the places, as they are carried forward in the diurnal revolution.

We have thus far supposed that the moon comes to her conjunction precisely at the node, or at the moment when she is crossing the ecliptic. But, secondly, suppose she is on the north side of the ecliptic at the time of conjunction, and moving towards her descending node, and that the conjunction takes place as far from the node as an eclipse can happen. The shadow will not fall in the plane of the ecliptic, but a little northward of it, so as just to graze the earth near the pole of the ecliptic. The nearer the conjunction comes to the node, the further the shadow will fall from the polar towards the equatorial regions.

In a solar eclipse, the shadow of the moon travels over a portion of the earth, as the shadow of a small cloud, seen from an eminence in a clear day, rides along over hills and plains. Let us imagine ourselves standing on the moon; then we shall see the earth partially eclipsed by the moon's shadow, in the same manner as we now see the moon eclipsed by the shadow of the earth; and we might calculate the various circumstances of the eclipse,—its commencement, duration, and quantity,—in the same manner as we calculate these elements in an eclipse of the moon, as seen from the earth. But although the general characters of a solar eclipse might be investigated on these principles, so far as respects the earth at large, yet, as the appearances of the same eclipse of the sun are very different at different places on the earth's surface, it is necessary to calculate its peculiar aspects for each place separately, a circumstance which makes the calculation of a solar eclipse much more complicated and tedious than that of an eclipse of the moon. The moon, when she enters the shadow of the earth, is deprived of the light of the part immersed, and the effect upon its appearance is the same as though that part were painted black, in which case it would be black alike to all places where the moon was above the horizon. But it not so with a solar eclipse. We do not see this by the shadow cast on the earth, as we should do, if we stood on the moon, but by the interposition of the moon between us and the sun; and the sun may be hidden from one observer, while he is in full view of another only a few miles distant. Thus, a small insulated cloud sailing in a clear sky will, for a few moments, hide the sun from us, and from a certain space near us, while all the region around is illuminated. But although the analogy between the motions of the shadow of a small cloud and of the moon in a solar eclipse holds good in many particulars, yet the velocity of the lunar shadow is far greater than that of the cloud, being no less than two thousand two hundred and eighty miles per hour.

The moon's shadow can never cover a space on the earth more than one hundred and seventy miles broad, and the space actually covered commonly falls much short of that. The portion of the earth's surface ever covered by the moon's penumbra is about four thousand three hundred and ninety-three miles.

The apparent diameter of the moon varies materially at different times, being greatest when the moon is nearest to us, and least when she is furthest off; while the sun's apparent dimensions remain nearly the same. When the moon is at her average distance from the earth, she is just about large enough to cover the sun's disk; consequently, if, in a central eclipse of the sun, the moon is at her mean distance, she covers the sun but for an instant, producing only a momentary eclipse. If she is nearer than her average distance, then the eclipse may continue total some time, though never more than eight minutes, and seldom so long as that; but if she is further off than usual, or towards her apogee, then she is not large enough to cover the whole solar disk, but we see a ring of the sun encircling the moon, constituting an annular eclipse, as seen in Fig. 44. Even the elevation of the moon above the horizon will sometimes sensibly affect the dimensions of the eclipse. You will recollect that the moon is nearer to us when on the meridian than when in the horizon by nearly four thousand miles, or by nearly the radius of the earth; and consequently, her apparent diameter is largest when on the meridian. The difference is so considerable, that the same eclipse will appear total to a spectator who views it near his meridian, while, at the same moment, it appears annular to one who has the moon near his horizon. An annular eclipse may last, at most, twelve minutes and twenty-four seconds.

Fig. 44.

Eclipses of the sun are more frequent than those of the moon. Yet lunar eclipses being visible to every part of the terrestrial hemisphere opposite to the sun, while those of the sun are visible only to a small portion of the hemisphere on which the moon's shadow falls, it happens that, for any particular place on the earth, lunar eclipses are more frequently visible than solar. In any year, the number of eclipses of both luminaries cannot be less than two nor more than seven: the most usual number is four, and it is very rare to have more than six. A total eclipse of the moon frequently happens at the next full moon after an eclipse of the sun. For since, in a solar eclipse, the sun is at or near one of the moon's nodes,—that is, is projected to the place in the sky where the moon crosses the ecliptic,—the earth's shadow, which is of course directly opposite to the sun, must be at or near the other node, and may not have passed too far from the node before the moon comes round to the opposition and overtakes it. In total eclipses of the sun, there has sometimes been observed a remarkable radiation of light from the margin of the sun, which is thought to be owing to the zodiacal light, which is of such dimensions as to extend far beyond the solar orb. A striking appearance of this kind was exhibited in the total eclipse of the sun which occurred in June, 1806.