Fig. 48.
The variations of distance in the sun are not great enough to influence the tides very materially, but the variations in the moon's distances have a striking effect. The tides which happen, when the moon is in perigee, are considerably greater than when she is in apogee; and if she happens to be in perigee at the time of the syzygies, the spring tides are unusually high.
The motion of the tide-wave is not a progressive motion, but a mere undulation, and is to be carefully distinguished from the currents to which it gives rise. If the ocean completely covered the earth, the sun and moon being in the equator, the tide-wave would travel at the same rate as the earth revolves on its axis. Indeed, the correct way of conceiving of the tide-wave, is to consider the moon at rest, and the earth, in its rotation from west to east, as bringing successive portions of water under the moon, which portions being elevated successively, at the same rate as the earth revolves on its axis, have a relative motion westward, at the same rate.
The tides of rivers, narrow bays, and shores far from the main body of the ocean, are not produced in those places by the direct action of the sun and moon, but are subordinate waves propagated from the great tide-wave, and are called derivative tides, while those raised directly by the sun and moon are called primitive tides.
Fig. 49.
The velocity with which the tide moves will depend on various circumstances, but principally on the depth, and probably on the regularity, of the channel. If the depth is nearly uniform the tides will be regular; but if some parts of the channel are deep while others are shallow, the waters will be detained by the greater friction of the shallow places, and the tides will be irregular. The direction, also, of the derivative tide may be totally different from that of the primitive. Thus, in Fig. 49, if the great tide-wave, moving from east to west, is represented by the lines 1, 2, 3, 4, the derivative tide, which is propagated up a river or bay, will be represented by the lines 3, 4, 5, 6, 7. Advancing faster in the channel than next the bank, the tides will lag behind towards the shores, and the tide-wave will take the form of curves, as represented in the diagram.
On account of the retarding influence of shoals, and an uneven, indented coast, the tide-wave travels more slowly along the shores of an island than in the neighboring sea, assuming convex figures at a little distance from the island, and on opposite sides of it. These convex lines sometimes meet, and become blended in such a way, as to create singular anomalies in a sea much broken by islands, as well as on coasts indented with numerous bays and rivers. Peculiar phenomena are also produced, when the tide flows in at opposite extremities of a reef or island, as into the two opposite ends of Long-Island Sound. In certain cases, a tide-wave is forced into a narrow arm of the sea, and produces very remarkable tides. The tides of the Bay of Fundy (the highest in the world) are ascribed to this cause. The tides on the coast of North America are derived from the great tide-wave of the South Atlantic, which runs steadily northward along the coast to the mouth of the Bay of Fundy, where it meets the northern tide-wave flowing in the opposite direction. This accumulated wave being forced into the narrow space occupied by the Bay, produces the remarkable tide of that place.
The largest lakes and inland seas have no perceptible tides. This is asserted by all writers respecting the Caspian and Euxine; and the same is found to be true of the largest of the North-American lakes, Lake Superior. Although these several tracts of water appear large, when taken by themselves, yet they occupy but small portions of the surface of the globe, as will appear evident from the delineation of them on the artificial globe. Now, we must recollect that the primitive tides are produced by the unequal action of the sun and moon upon the different parts of the earth; and that it is only at points whose distance from each other bears a considerable ratio to the whole distance of the sun or moon, that the inequality of action becomes manifest. The space required to make the effect sensible is larger than either of these tracts of water. It is obvious, also, that they have no opportunity to be subject to a derivative tide.