An angle is measured by an arc included between two radii. Thus, in Fig. 1, the angle contained between the two radii, C A and C B, that is, the angle A C B, is measured by the arc A B. Every circle, it will be recollected, is divided into three hundred and sixty equal parts, called degrees; and any arc, as A B, contains a certain number of degrees, according to its length. Thus, if the arc A B contains forty degrees, then the opposite angle A C B is said to be an angle of forty degrees, and to be measured by A B. But this arc is the same part of the smaller circle that E F is of the greater. The arc A B, therefore, contains the same number of degrees as the arc E F, and either may be taken as the measure of the angle A C B. As the whole circle contains three hundred and sixty degrees, it is evident, that the quarter of a circle, or quadrant, contains ninety degrees, and that the semicircle A B D G contains one hundred and eighty degrees.

Fig. 1.

The complement of an arc, or angle, is what it wants of ninety degrees. Thus, since A D is an arc of ninety degrees, B D is the complement of A B, and A B is the complement of B D. If A B denotes a certain number of degrees of latitude, B D will be the complement of the latitude, or the colatitude, as it is commonly written.

The supplement of an arc, or angle, is what it wants of one hundred and eighty degrees. Thus, B A is the supplement of G D B, and G D B is the supplement of B A. If B A were twenty degrees of longitude, G D B, its supplement, would be one hundred and sixty degrees. An angle is said to be subtended by the side which is opposite to it. Thus, in the triangle A C K, the angle at C is subtended by the side A K, the angle at A by C K, and the angle at K by C A. In like manner, a side is said to be subtended by an angle, as A K by the angle at C.

Let us now proceed with the doctrine of the sphere.

A section of a sphere, by a plane cutting it in any manner, is a circle. Great circles are those which pass through the centre of the sphere, and divide it into two equal hemispheres. Small circles are such as do not pass through the centre, but divide the sphere into two unequal parts. The axis of a circle is a straight line passing through its centre at right angles to its plane. The pole of a great circle is the point on the sphere where its axis cuts through the sphere. Every great circle has two poles, each of which is every where ninety degrees from the great circle. All great circles of the sphere cut each other in two points diametrically opposite, and consequently their points of section are one hundred and eighty degrees apart. A great circle, which passes through the pole of another great circle, cuts the latter at right angles. The great circle which passes through the pole of another great circle, and is at right angles to it, is called a secondary to that circle. The angle made by two great circles on the surface of the sphere is measured by an arc of another great circle, of which the angular point is the pole, being the arc of that great circle intercepted between those two circles.

In order to fix the position of any place, either on the surface of the earth or in the heavens, both the earth and the heavens are conceived to be divided into separate portions, by circles, which are imagined to cut through them, in various ways. The earth thus intersected is called the terrestrial, and the heavens the celestial, sphere. We must bear in mind, that these circles have no existence in Nature, but are mere landmarks, artificially contrived for convenience of reference. On account of the immense distances of the heavenly bodies, they appear to us, wherever we are placed, to be fixed in the same concave surface, or celestial vault. The great circles of the globe, extended every way to meet the concave sphere of the heavens, become circles of the celestial sphere.

The horizon is the great circle which divides the earth into upper and lower hemispheres, and separates the visible heavens from the invisible. This is the rational horizon. The sensible horizon is a circle touching the earth at the place of the spectator, and is bounded by the line in which the earth and skies seem to meet. The sensible horizon is parallel to the rational, but is distant from it by the semidiameter of the earth, or nearly four thousand miles. Still, so vast is the distance of the starry sphere, that both these planes appear to cut the sphere in the same line; so that we see the same hemisphere of stars that we should see, if the upper half of the earth were removed, and we stood on the rational horizon.

The poles of the horizon are the zenith and nadir. The zenith is the point directly over our heads; and the nadir, that directly under our feet. The plumb-line (such as is formed by suspending a bullet by a string) is in the axis of the horizon, and consequently directed towards its poles. Every place on the surface of the earth has its own horizon; and the traveller has a new horizon at every step, always extending ninety degrees from him, in all directions.