Figure 75. A NEBULA IN THE MILKY WAY.

It is a grand idea, first conceived by Sir William Herschel, and generally adopted by astronomers, that the whole Galaxy, or Milky Way, is nothing else than a nebula, and appears so extended, merely because it happens to be that particular nebula to which we belong. According to this view, our sun, with his attendant planets and comets, constitutes but a single star of the Galaxy, and our firmament of stars, or visible heavens, is composed of the stars of our nebula alone. An inhabitant of any of the other nebulæ would see spreading over him a firmament equally spacious, and in some cases inconceivably more brilliant.

It is an exalted spectacle to travel over the Galaxy in a clear night, with a powerful telescope, with the heart full of the idea that every star is a world. Sir William Herschel, by counting the stars in a single field of his telescope, estimated that fifty thousand had passed under his review in a zone two degrees in breadth, during a single hour's observation. Notwithstanding the apparent contiguity of the stars which crowd the Galaxy, it is certain that their mutual distances must be inconceivably great.

It is with some reluctance that I leave, for the present, this fairy land of astronomy; but I must not omit, before bringing these Letters to a conclusion, to tell you something respecting other curious and interesting objects to be found among the stars.

Variable Stars are those which undergo a periodical change of brightness. One of the most remarkable is the star Mira, in the Whale, (Omicron Ceti.) It appears once in eleven months, remains at its greatest brightness about a fortnight, being then, on some occasions, equal to a star of the second magnitude. It then decreases about three months, until it becomes completely invisible, and remains so about five months, when it again becomes visible, and continues increasing during the remaining three months of its period.

Another very remarkable variable star is Algol, (Beta Persei.) It is usually visible as a star of the second magnitude, and continues such for two days and fourteen hours, when it suddenly begins to diminish in splendor, and in about three and a half hours is reduced to the fourth magnitude. It then begins again to increase, and in three and a half hours more is restored to its usual brightness, going through all its changes in less than three days. This remarkable law of variation appears strongly to suggest the revolution round it of some opaque body, which, when interposed between us and Algol, cuts off a large portion of its light. "It is," says Sir J. Herschel, "an indication of a high degree of activity in regions where, but for such evidences, we might conclude all lifeless. Our sun requires almost nine times this period to perform a revolution on its axis. On the other hand, the periodic time of an opaque revolving body, sufficiently large, which would produce a similar temporary obscuration of the sun, seen from a fixed star, would be less than fourteen hours." The duration of these periods is extremely various. While that of Beta Persei, above mentioned, is less than three days, others are more than a year; and others, many years.

Temporary Stars are new stars, which have appeared suddenly in the firmament, and, after a certain interval, as suddenly disappeared, and returned no more. It was the appearance of a new star of this kind, one hundred and twenty-five years before the Christian era, that prompted Hipparchus to draw up a catalogue of the stars, the first on record. Such, also, was the star which suddenly shone out, A.D. 389, in the Eagle, as bright as Venus, and, after remaining three weeks, disappeared entirely. At other periods, at distant intervals, similar phenomena have presented themselves. Thus the appearance of a star in 1572 was so sudden, that Tycho Brahe, returning home one day, was surprised to find a collection of country people gazing at a star which he was sure did not exist half an hour before. It was then as bright as Sirius, and continued to increase until it surpassed Jupiter when brightest, and was visible at mid-day. In a month it began to diminish; and, in three months afterwards, it had entirely disappeared. It has been supposed by some that, in a few instances, the same star has returned, constituting one of the periodical or variable stars of a long period. Moreover, on a careful reexamination of the heavens, and a comparison of catalogues, many stars are now discovered to be missing.

Double Stars are those which appear single to the naked eye, but are resolved into two by the telescope; or, if not visible to the naked eye, are seen in the telescope so close together as to be recognised as objects of this class. Sometimes, three or more stars are found in this near connexion, constituting triple, or multiple stars. Castor, for example, when seen by the naked eye, appears as a single star, but in a telescope even of moderate powers, it is resolved into two stars, of between the third and fourth magnitudes, within five seconds of each other. These two stars are nearly of equal size; but more commonly, one is exceedingly small in comparison with the other, resembling a satellite near its primary, although in distance, in light, and in other characteristics, each has all the attributes of a star, and the combination, therefore, cannot be that of a planet with a satellite. In most instances, also, the distance between these objects is much less than five seconds; and, in many cases, it is less than one second. The extreme closeness, together with the exceeding minuteness, of most of the double stars, requires the best telescopes united with the most acute powers of observation. Indeed, certain of these objects are regarded as the severest tests both of the excellence of the instruments and of the skill of the observer. The diagram on page 382, Fig. 76, represents four double stars, as seen with appropriate magnifiers. No. 1, exhibits Epsilon Bootis with a power of three hundred and fifty; No. 2, Rigel, with a power of one hundred and thirty; No. 3, the Pole-star, with a power of one hundred; and No. 4, Castor, with a power of three hundred.

Our knowledge of the double stars almost commenced with Sir William Herschel, about the year 1780. At the time he began his search for them, he was acquainted with only four. Within five years he discovered nearly seven hundred double stars, and during his life, he observed no less than twenty-four hundred. In his Memoirs, published in the Philosophical Transactions, he gave most accurate measurements of the distances between the two stars, and of the angle which a line joining the two formed with a circle parallel to the equator. These data would enable him, or at least posterity, to judge whether these minute bodies ever change their position with respect to each other. Since 1821, these researches have been prosecuted, with great zeal and industry, by Sir James South and Sir John Herschel, in England; while Professor Struve, of Dorpat, with the celebrated telescope of Fraunhofer, has published, from his own observations, a catalogue of three thousand double stars, the determination of which involved the distinct and most minute inspection of at least one hundred and twenty thousand stars. Sir John Herschel, in his recent survey of the southern hemisphere, is said to have added to the catalogue of double stars nearly three thousand more.