| VP = | 1700 × 14·706 × {1 + 0·002083 (T − 32)} | |
| 1 + 0·002083 × 180 | ||
| = 18183{1 + 0·002083 (T − 32)}. | (9.) | |
If, by means of this formula (9.), and any of the formulæ (1.), (2.), (3.), (4.), (5.), T were eliminated, we should obtain a formula between V and P, which would enable us to compute the enlargement of volume which water undergoes in passing into steam under any proposed pressure. But such a formula would not be suitable for practical computations. By the formulæ (1.) to (5.), a table of pressures and corresponding temperatures may be computed; and these being known, the formula (9.) will be sufficient for the computation of the corresponding values of V, or the enlargement of volume which water undergoes in passing into steam.
In the following table, the temperatures corresponding to pressures from 1 to 240 lbs. per square inch are given by computation from the formulæ (2.) to (5.), and the volumes of steam produced by an unit of volume of water as computed from the formula (9.).
The mechanical effect is obtained by multiplying the pressure in pounds by the expansion of a cubic inch of water in passing into steam expressed in feet, and is therefore the number of pounds which would be raised one foot by the evaporation of a cubic inch of water under the given pressure. [Pg509]
| Total pressure in Pounds per Square Inch. | Corresponding Temperature. | Volume of the Steam compared to the Volume of the Water that has produced it. | Mechanical Effect of a Cubic Inch of Water evaporated in Pounds raised One Foot. |
|---|---|---|---|
| 1 | 102·9 | 20868 | 1739 |
| 2 | 126·1 | 10874 | 1812 |
| 3 | 141·0 | 7437 | 1859 |
| 4 | 152·3 | 5685 | 1895 |
| 5 | 161·4 | 4617 | 1924 |
| 6 | 169·2 | 3897 | 1948 |
| 7 | 175·9 | 3376 | 1969 |
| 8 | 182·0 | 2983 | 1989 |
| 9 | 187·4 | 2674 | 2006 |
| 10 | 192·4 | 2426 | 2022 |
| 11 | 197·0 | 2221 | 2036 |
| 12 | 201·3 | 2050 | 2050 |
| 13 | 205·3 | 1904 | 2063 |
| 14 | 209·1 | 1778 | 2074 |
| 15 | 212·8 | 1669 | 2086 |
| 16 | 216·3 | 1573 | 2097 |
| 17 | 219·6 | 1488 | 2107 |
| 18 | 222·7 | 1411 | 2117 |
| 19 | 225·6 | 1343 | 2126 |
| 20 | 228·5 | 1281 | 2135 |
| 21 | 231·2 | 1225 | 2144 |
| 22 | 233·8 | 1174 | 2152 |
| 23 | 236·3 | 1127 | 2160 |
| 24 | 238·7 | 1084 | 2168 |
| 25 | 241·0 | 1044 | 2175 |
| 26 | 243·3 | 1007 | 2182 |
| 27 | 245·5 | 973 | 2189 |
| 28 | 247·6 | 941 | 2196 |
| 29 | 249·6 | 911 | 2202 |
| 30 | 251·6 | 883 | 2209 |
| 31 | 253·6 | 857 | 2215 |
| 32 | 255·5 | 833 | 2221 |
| 33 | 257·3 | 810 | 2226 |
| 34 | 259·1 | 788 | 2232 |
| 35 | 260·9 | 767 | 2238 |
| 36 | 262·6 | 748 | 2243 |
| 37 | 264·3 | 729 | 2248 |
| 38 | 265·9 | 712 | 2253 |
| 39 | 267·5 | 695 | 2259 |
| 40 | 269·1 | 679 | 2264 |
| 41 | 270·6 | 664 | 2268 |
| 42 | 272·1 | 649 | 2273 |
| 43 | 273·6 | 635 | 2278 |
| 44 | 275·0 | 622 | 2282 |
| 45 | 276·4 | 610 | 2287 |
| 46 | 277·8 | 598 | 2291 |
| 47 | 279·2 | 586 | 2296 |
| 48 | 280·5 | 575 | 2300 |
| 49 | 281·9 | 564 | 2304 |
| 50 | 283·2 | 554 | 2308 |
| 51 | 284·4 | 544 | 2312 |
| 52 | 285·7 | 534 | 2316 |
| 53 | 286·9 | 525 | 2320 |
| 54 | 288·1 | 516 | 2324 |
| 55 | 289·3 | 508 | 2327 |
| 56 | 290·5 | 500 | 2331 |
| 57 | 291·7 | 492 | 2335 |
| 58 | 292·9 | 484 | 2339 |
| 59 | 294·2 | 477 | 2343 |
| 60 | 295·6 | 470 | 2347 |
| 61 | 296·9 | 463 | 2351 |
| 62 | 298·1 | 456 | 2355 |
| 63 | 299·2 | 449 | 2359 |
| 64 | 300·3 | 443 | 2362 |
| 65 | 301·3 | 437 | 2365 |
| 66 | 302·4 | 431 | 2369 |
| 67 | 303·4 | 425 | 2372 |
| 68 | 304·4 | 419 | 2375 |
| 69 | 305·4 | 414 | 2378 |
| 70 | 306·4 | 408 | 2382 |
| 71 | 307·4 | 403 | 2385 |
| 72 | 308·4 | 398 | 2388 |
| 73 | 309·3 | 393 | 2391 |
| 74 | 310·3 | 388 | 2394 |
| 75 | 311·2 | 383 | 2397 |
| 76 | 312·2 | 379 | 2400 |
| 77 | 313·1 | 374 | 2403 |
| 78 | 314·0 | 370 | 2405 |
| 79 | 314·9 | 366 | 2408 |
| 80 | 315·8 | 362 | 2411 |
| 81 | 316·7 | 358 | 2414 |
| 82 | 317·6 | 354 | 2417 |
| 83 | 318·4 | 350 | 2419 |
| 84 | 319·3 | 346 | 2422 |
| 85 | 320·1 | 342 | 2425 |
| 86 | 321·0 | 339 | 2427 |
| 87 | 321·8 | 335 | 2430 |
| 88 | 322·6 | 332 | 2432 |
| 89 | 323·5 | 328 | 2435 |
| 90 | 324·3 | 325 | 2438 |
| 91 | 325·1 | 322 | 2440 |
| 92 | 325·9 | 319 | 2443 |
| 93 | 326·7 | 316 | 2445 |
| 94 | 327·5 | 313 | 2448 |
| 95 | 328·2 | 310 | 2450 |
| 96 | 329·0 | 307 | 2453 |
| 97 | 329·8 | 304 | 2455 |
| 98 | 330·5 | 301 | 2457 |
| 99 | 331·3 | 298 | 2460 |
| 100 | 332·0 | 295 | 2462 |
| 110 | 339·2 | 271 | 2486 |
| 120 | 345·8 | 251 | 2507 |
| 130 | 352·1 | 233 | 2527 |
| 140 | 357·9 | 218 | 2545 |
| 150 | 363·4 | 205 | 2561 |
| 160 | 368·7 | 193 | 2577 |
| 170 | 373·6 | 183 | 2593 |
| 180 | 378·4 | 174 | 2608 |
| 190 | 382·9 | 166 | 2622 |
| 200 | 387·3 | 158 | 2636 |
| 210 | 391·5 | 151 | 2650 |
| 220 | 395·5 | 145 | 2663 |
| 230 | 399·4 | 140 | 2675 |
| 240 | 403·1 | 134 | 2687 |
In the absence of any direct method of determining the general relation between the pressure and volume of common steam, empirical formulæ expressing it have been proposed by different mathematicians.
The late Professor Navier proposed the following:—Let S express the volume of steam into which an unit of volume of water is converted under the pressure P, this pressure being expressed in kilogrammes per square mètre. Then the relation between S and P will be
| S = | a | , |
| b + mP |
where a = 1000, b = 0·09, and m = 0·0000484.