By the due application of heat, even this small degree of cohesion may be conquered, and a preponderance of the opposite principle of repulsion may be created. But another physical influence here interposes its aid, and conspires with cohesion in resisting the transmission of the body from the liquid to the vaporous state: this force is no other than the pressure of the atmosphere, already explained. This pressure has an obvious tendency to restrain the particles of the liquid, to press them together, and to resist their separation. The repulsive principle of the heat introduced must therefore not only neutralize the cohesion, but must also impart to the atoms of the liquid a sufficient elasticity or repulsive energy to enable them to fly asunder, and assume the vaporous form in spite of this atmospheric resistance.

Now it is clear, that if this atmospheric resistance be subject to any variation in its intensity, from causes whether natural or artificial, the repulsive energy necessary to be introduced by the heat, will vary proportionally: if the atmospheric pressure be diminished, then less heat will be necessary to vaporize the liquid. If, on the other hand, this pressure be increased, a greater quantity of heat will be required to impart the necessary elasticity.

(17.) From this reasoning we must expect that any cause, whether natural or artificial, which diminishes the atmospheric pressure upon the surface of a liquid, will cause that liquid to boil at a lower temperature: and on the other hand, any cause which may increase the atmospheric pressure upon the liquid, will render it necessary to raise it to a higher temperature before it can boil.

These inferences we accordingly find supported by experience. Under a pressure of 15lb. on the square inch, i. e. when the barometer is at 30 inches, water boils at the temperature of 212° of the common thermometer. But if water at a lower temperature, suppose 180°, be placed under the receiver of an air-pump, and, by the process of exhaustion the atmospheric pressure be removed, or very much diminished, the water will boil, although its temperature still remain at 180°, as may be indicated by a thermometer placed in it.

On the other hand, if a thermometer be inserted air-tight in the lid of a close digester containing water with common atmospheric air above it, when the vessel is heated the air acquires an increased elasticity; and being confined by the cover, presses, with increased force, on the surface of the water. By observing the thermometer while the vessel is exposed to the action of heat, it will be seen to rise considerably above 212°, suppose to 230°, and would continue so to rise until the strength of the vessel could no longer resist the pressure within it.

The temperature at which water boils is commonly said to be 212°, which is called the boiling-point of the thermometer; but, strictly speaking, this is only true when the barometer stands at 30 inches. If it be lower, water will boil at a lower temperature, because the atmospheric pressure is less; and if it be higher, as at 31, water will not boil until it receives a higher temperature, the pressure being greater.

According as the cohesive forces of the particles of liquids are more or less active, they boil at greater or less temperatures. In general the lighter liquids, such as alcohol and ether, boil at lower temperatures. These fluids, in fact, would boil by merely removing the atmospheric pressure, as may be proved by placing them under the receiver of an air-pump, and withdrawing the air. From this we may conclude that these and similar substances would never exist in the liquid state at all, but for the atmospheric pressure.

(18.) The elasticity of vapour raised from a boiling liquid, is equal to the pressure under which it is produced. Thus, steam raised from water at 212°, and, therefore, under a pressure of 15lb. on the square inch, is endued with an elastic force which would exert a pressure on the sides of any vessel which confines it, also equal to 15lb. on the square inch. Since an increased pressure infers an increased temperature in boiling, it follows, that where steam of a higher pressure than the atmosphere is required, it is necessary that the water should be boiled at a higher temperature.

(19.) We have already stated that there is a certain point at which the temperature of a liquid will cease to rise, and that all the heat communicated to it beyond this is consumed in the formation of vapour. It has been ascertained, that when water boils at 212°, under a pressure equal to 30 inches of mercury, a cubic inch of water forms a cubic foot[4] of steam, the elastic force of which is equal to the atmospheric pressure, and the temperature of which is 212°. Since there are 1728 cubic inches in a cubic foot, it follows, that when water at this temperature passes from the liquid to the vaporous state, it is dilated into 1728 times its bulk.

(20.) We have seen that about 1000 degrees of heat must be communicated to any given quantity of water at 212°, in order to convert it into steam of the same temperature, and possessing a pressure amounting to about 15 pounds on the square inch, and that such steam will occupy above 1700 times the bulk of the water from which it was raised. Now we might anticipate, that by abstracting the heat thus employed in converting the liquid into vapour, a series of changes would be produced exactly the reverse of those already described; and such is found to be actually the case. Let us suppose a vessel, the capacity of which is 1728 cubic inches, to be filled with steam, of the temperature of 212°, and exerting a pressure of 15 pounds on the square inch; let 5-1/2 cubic inches of water, at the temperature of 32°, be injected into this vessel, immediately the steam will impart the heat, which it has absorbed in the process of vaporisation to the water thus injected, and will itself resume the liquid form. It will shrink into its primitive dimensions of one cubic inch, and the heat which it will dismiss will be sufficient to raise the 5-1/2 cubic inches of injected water to the temperature of 212°. The contents of the vessel will thus be 6-1/2 cubic inches of water at the temperature of 212°. One of these cubic inches is in fact the steam which previously filled the vessel reconverted into water, the other 5-1/2 are the injected water which has been raised from the temperature of 32° to 212° by the heat which has been dismissed by the steam in resuming the liquid state. It will be observed that in this transmission no temperature is lost, since the cubic inch of water into which the steam is converted has the same temperature as the steam had before the cold water was injected.