(28.) It appears, by a MS. in the Harleian Collection in the British Museum, that a mode of applying steam to raise water was proposed to Louis XIV. by Sir Samuel Morland. It contains, however, nothing more than might have been collected from Lord Worcester's description, and is only curious, because of the knowledge the writer appears to have had of the expansion which water undergoes in passing into steam. The following is extracted from the MS.:

"The principles of the new force of fire invented by Chevalier Morland in 1682, and presented to his Most Christian Majesty in 1683:—'Water being converted into vapour by the force of fire, these vapours shortly require a greater space (about 2000 times) than the water before occupied, and sooner than be constantly confined would split a piece of cannon. But being duly regulated according to the rules of statics, and by science reduced to measure, weight, and balance, then they bear their load peaceably (like good horses,) and thus become of great use to mankind, particularly for raising water, according to the following table, which shows the number of pounds that may be raised 1800 times per hour to a height of six inches by cylinders half filled with water, as well as the different diameters and depths of the said cylinders.'"

DENIS PAPIN, 1695.

(29.) Denis Papin, a native of Blois in France, and professor of mathematics at Marbourg, had been engaged about this period in the contrivance of a machine in which the atmospheric pressure should be made available as a mechanical agent by creating a partial vacuum in a cylinder under a piston. His first attempts were directed to the production of this vacuum by mechanical means, having proposed to apply a water-wheel to work an air-pump, and so maintain the degree of rarefaction required. This, however, would eventually have amounted to nothing more than a mode of transmitting the power of the water-wheel to another engine, since the vacuum produced in this way could only give back the power exerted by the water-wheel diminished by the friction of the pumps; still this would attain the end first proposed by Papin, which was merely to transmit the force of the stream of a river, or a fall of water, to a distant point, by partially exhausted pipes or tubes. He next, however, attempted to produce a partial vacuum by the explosion of gunpowder; but this was found to be insufficient, since so much air remained in the cylinder under the piston, that at least half the power due to a vacuum would have been lost. "I have, therefore," proceeds Papin, "attempted to attain this end by another method. Since water being converted into steam by heat acquires the property of elasticity like air, and may afterwards be recondensed so perfectly by cold that there will no longer remain the appearance of elasticity in it, I have thought that it would not be difficult to construct machines in which, by means of a moderate heat, and at a small expense, water would produce that perfect vacuum which has been vainly sought by means of gunpowder."

Papin accordingly constructed the model of a machine, consisting of a small pump, in which was placed a solid piston, and in the bottom of the cylinder under the piston was contained a small quantity of water. The piston being in immediate contact with this water, so as to exclude the atmospheric air, on applying fire to the bottom of the cylinder steam was produced, the elastic force of which raised the piston to the top of the cylinder: the fire being then removed, and the cylinder being cooled by the surrounding air, the steam was condensed and reconverted into water, leaving a vacuum in the cylinder into which the piston was pressed by the force of the atmosphere. The fire being applied and subsequently removed, another ascent and descent were accomplished; and in the same manner the alternate motion of the piston might be continued. Papin described no other form of machine by which this property could be rendered available in practice; but he states generally that the same end may be attained by various forms of machines easy to be imagined.[6]

THOMAS SAVERY, 1698.

(30.) The discovery of the method of producing a vacuum by the condensation of steam was reproduced before 1688, by Captain Thomas Savery, to whom a patent was granted in that year for a steam engine to be applied to the raising of water, &c. Savery proposed to combine the machine described by the Marquis of Worcester, with an apparatus for raising water by suction into a vacuum produced by the condensation of steam.

Savery appears to have been ignorant of the publication of Papin, in 1695, and states that his discovery of the condensing principle arises from the following circumstance:—

Having drunk a flask of Florence at a tavern and flung the empty flask on the fire, he called for a basin of water to wash his hands. A small quantity which remained in the flask began to boil and steam issued from its mouth. It occurred to him to try what effect would be produced by inverting the flask and plunging its mouth in the cold water. Putting on a thick glove to defend his hand from the heat, he seized the flask, and the moment he plunged its mouth in the water, the liquid immediately rushed up into the flask and filled it. (21.)

Savery stated that this circumstance immediately suggested to him the possibility of giving effect to the atmospheric pressure by creating a vacuum in this manner. He thought that if, instead of exhausting the barrel of a pump by the usual laborious method of a piston and sucker, it was exhausted by first filling it with steam and then condensing the same steam, the atmospheric pressure would force the water from the well into the pump-barrel and into any vessel connected with it, provided that vessel were not more than about 34 feet above the elevation of the water in the well. He perceived, also, that, having lifted the water to this height, he might use the elastic force of steam in the manner described by the Marquis of Worcester to raise the same water to a still greater elevation, and that the same steam which accomplished this mechanical effect would serve by its subsequent condensation to repeat the vacuum and draw up more water. It was on this principle that Savery constructed the first engine in which steam was ever brought into practical operation.