Pl. I.

(36.) There is also another circumstance which increases the consumption of fuel. The water must be forced through b, not only against the atmospheric pressure, but also against a column of 68 feet of water. Steam is therefore required of a pressure of 45lbs. on the square inch. Consequently the water in the boiler must be boiled under this pressure. That this should take place, it is necessary that the water should be raised to a temperature considerably above 212° (17.), even so high as 267°; and thus an increased heat must be given to the boiler. Independently of the other defects, this intense heat weakened and gradually destroyed the apparatus.

Besides the drainage of mines, Savery proposed to apply his steam engine to a variety of other purposes; such as supplying cities with water, forming ornamental waterworks in pleasure grounds, turning mills, &c.

Savery was the first who suggested the method of expressing the power of an engine with reference to that of horses. In this comparison, however, he supposed each horse to work but 8 hours a day, while the engine works for 24 hours. This method of expressing the power of steam engines will be explained hereafter.

(37.) The failure of the engines proposed by Captain Savery in the great work of drainage, from the causes which have been just mentioned and the increasing necessity for effecting this object arising from the circumstance of the large property in mines, which became every year unproductive by it, stimulated the ingenuity of mechanics to contrive some means of rendering those powers of steam exhibited in Savery's engine practically available. Among others, Thomas Newcomen, a blacksmith of Dartmouth, and John Cawley, a plumber of the same place, turned their attention to this inquiry.

Newcomen appears to have resumed the old method of raising the water from the mines by ordinary pumps, but conceived the idea of working these pumps by some moving power less expensive than that of horses. The means whereby he proposed effecting this was by connecting the end of a pump rod D ([fig. 10].), by a chain, with the arch-head A of a working beam A B, playing on an axis C. The other arch-head B of this beam was connected by a chain with the rod E of a solid piston P, which moved air-tight in a cylinder F. If a vacuum be created beneath the piston P, the atmospheric pressure acting upon it will press it down with a force of 15 lbs. per square inch; and the end A of the beam being thus raised, the pump-rod D will be drawn up. If a pressure equivalent to the atmosphere be then introduced below the piston, so as to neutralize the downward pressure, the piston will be in a state of indifference as to rising or falling; and if in this case the rod D be made heavier than the piston and its rod, so as to overcome the friction, &c. it will descend, and elevate the piston again to the top of the cylinder. The vacuum being again produced, another descent of the piston, and consequent elevation of the pump-rod, will take place; and so the process may be continued.

Pl. II.
SAVERY'S STEAM ENGINE