This circumstance produced an acquaintance between him and the celebrated Dr. Robison, then a student in Glasgow, who directed Watt's attention to the steam engine. In his first experiments he used steam of a high-pressure; but found it attended with so much danger of bursting the boiler, and difficulty of keeping the joints tight, and other objections, that he relinquished the inquiry at that time.

(46.) In the winter of 1763, Watt was employed to repair the model of an atmospheric engine, belonging to the natural philosophy class in the university—a circumstance which again turned his attention to the subject of the steam engine. He found the consumption of steam in working this model so great, that he inferred that the quantity wasted, must have had a very large proportion to that used in working the piston. His first conclusion was, that the material of the cylinder (brass) was too good a conductor of heat, and that much was thereby lost. He made some experiments, accordingly, with wooden cylinders, soaked in linseed oil, which, however, he soon laid aside. Further consideration convinced him that a prodigious waste of steam was essential to the very principle of the atmospheric engine. This will be easily understood.

When the steam has filled the cylinder so as to balance the atmospheric pressure on the piston, the cylinder must have the same temperature as the steam itself. Now, on introducing the condensing jet, the steam mixed with this water forms a mass of hot water in the bottom of the cylinder. This water, not being under the atmospheric pressure, boils at very low temperatures, and produces a vapour which resists the descent of the piston.

The heat of the cylinder itself assists this process; so that in order to produce a tolerably perfect vacuum, it was found necessary to introduce a quantity of condensing water, sufficient to reduce the temperature of the water in the cylinder lower than 100°, and consequently to cool the cylinder itself to that temperature. Under these circumstances, the descent of the piston was found to suffer very little resistance from any vapour within the cylinder: but then on the subsequent ascent, an immense waste of steam ensued; for the steam, on being admitted under the piston, was immediately condensed by the cold cylinder and water of condensation, and this continued until the cylinder became again heated up to 212°, to which point the whole cylinder should be heated before the ascent could be completed. Here, then, was an obvious and an extensive cause of the waste of heat. At every descent of the piston, the cylinder should be cooled below 100°; and at every ascent it should be again heated to 212°. It, therefore, became a question whether the force gained by the increased perfection of the vacuum was adequate to the waste of fuel in producing the vacuum; and it was found, on the whole, more profitable not to cool the cylinder to so low a temperature, and consequently to work with a very imperfect vacuum, and a diminished power.

Watt, therefore, found the engine involved in this dilemma: either much or little condensation-water must be used. If much were used, the vacuum would be perfect; but then the cylinder would be cooled, and would entail an extensive waste of fuel in heating it. If little were used, a vapour would remain, which would resist the descent of the piston, and rob the atmosphere of a part of its power. The great problem then pressed itself on his attention, to condense the steam without cooling the cylinder.

From the small quantity of water in the form of steam which filled the cylinder, and the large quantity of injected water to which this communicated heat, Watt was led to inquire what proportion the bulk of water in the liquid state bore to its bulk in the vaporous state; and also what proportion subsisted between the heat which it contained in these two states. He found by experiment that a cubic inch of water formed about a cubic foot of steam; and that the cubic foot of steam contained as much heat as would raise a cubic inch of water to about 1000°. (15.) This gave him some surprise, as the thermometer indicated the same temperature, 212°, for both the steam and the water from which it was raised. What then became of all the additional heat which was contained in the steam, and not indicated by the thermometer? Watt concluded that this heat must be in some way engaged in maintaining the water in its new form.

Struck with the singularity of this circumstance, he communicated it to Dr. Black, who then explained to Watt his doctrine of latent heat, which he had been teaching for a short time before that, but of which Watt had not previously heard; and thus, says Watt, "I stumbled upon one of the material facts on which that theory is founded."

(47.) Watt now gave his whole mind to the discovery of a method of "condensing the steam without cooling the cylinder." The idea occurred to him of providing a vessel separate from the cylinder, in which a constant vacuum might be sustained. If a communication could be opened between the cylinder and this vessel, the steam, by its expansive property, would rush from the cylinder to this vessel, where, being exposed to cold, it would be immediately condensed, the cylinder meanwhile being sustained at the temperature of 212°.

This happy conception formed the first step of that brilliant career which has immortalized the name of Watt, and which has spread his fame to the very skirts of civilization. He states, that the moment the notion of "separate condensation" struck him, all the other details of his improved engine followed in rapid and immediate succession, so that in the course of a day his invention was so complete that he proceeded to submit it to experiment.

His first notion was, as we have stated, to provide a separate vessel, called a condenser, having a pipe or tube communicating with the cylinder. This condenser he proposed to keep cold by being immersed in a cistern of cold water, and by providing a jet of cold water to play within it. When the communication with the cylinder is opened, the steam, rushing into the condenser, is immediately condensed by the jet and the cold surface. But here a difficulty presented itself, viz. how to dispose of the condensing water, and condensed steam, which would collect in the bottom of the condenser. But besides this, a quantity of air or permanent uncondensible gas would collect from various sources. Water in its ordinary state always holds more or less air in combination with it: the air thus combined with the water in the boiler passes through the tubes and cylinder with the steam, and would collect in the condenser. Air also would enter in combination with the condensing water, which would be set free by the heat it would receive from admixture with the steam. The air proceeding from these sources would, as Watt foresaw, accumulate in the condenser, even though the water might be withdrawn from it, and would at length resist the descent of the piston. To remedy this he proposed to form a communication between the bottom of the condenser and a pump which he called the AIR PUMP, so that the water and air which might be collected in the condenser would be drawn off; and it was easy to see how this pump could be worked by the machine itself. This constituted the second great step in the invention.