(68.) It is necessary to have a ready method of ascertaining at all times the strength of the steam which is used in working the engine. For this purpose a bent tube containing mercury is inserted into some part of the apparatus which has free communication with the steam. It is usually inserted in the jacket of the cylinder ([44].). Let A B C ([fig. 38].) be such a tube. The pressure of the steam forces the mercury down in the leg A B, and up in the leg B C. If the mercury in both legs be at exactly the same level, the pressure of the steam must be exactly equal to that of the atmosphere; because the steam pressure on the mercury in A B balances the atmospheric pressure on the mercury in B C. If, however, the level of the mercury in B C be above the level of the mercury in B A, the pressure of the steam will exceed that of the atmosphere. The excess of its pressure above that of the atmosphere may be found by observing the difference of the levels of the mercury in the tubes B C and B A; allowing a pressure of one pound on each square inch for every two inches in the difference of the levels.

If, on the contrary, the level of the mercury in B C should fall below its level in A B, the atmospheric pressure will exceed that of the steam, and the degree or quantity of the excess may be ascertained exactly in the same way.

If the tube be glass, the difference of levels of the mercury would be visible: but it is most commonly made of iron; and in order to ascertain the level, a thin wooden rod with a float is inserted in the open end of B C; so that the portion of the stick within the tube indicates the distance of the level of the mercury from its mouth. A bulb or cistern of mercury might be substituted for the leg A B, as in the common barometer. This instrument is called the steam-gauge.

If the steam-gauge be used as a measure of the strength of the steam which presses on the piston, it ought to be on the same side of the throttle valve (which is regulated by the governor) as the cylinder; for if it were on the same side of the throttle valve with the boiler, it would not be affected by the changes which the steam may undergo in passing through the throttle valve, when partially closed by the agency of the governor.

(69.) The force with which the piston is pressed depends on two things: 1o, the actual strength of the steam which presses on it; and 2o, on the actual strength of the vapour which resists it. For although the vacuum produced by the method of separate condensation be much more perfect than what had been produced in the atmospheric engines, yet still some vapour of a small degree of elasticity is found to be raised from the hot water in the bottom of the condenser before it can be extracted by the air-pump. One of these pressures is indicated by the steam-gauge already described; but still, before we can estimate the force with which the piston descends, it is necessary to ascertain the force of the vapour which remains uncondensed, and resists the motion of the piston. Another gauge, called the barometer-gauge, is provided for this purpose. A glass tube A B ([fig. 39].), more than thirty inches long, and open at both ends, is placed in an upright or vertical position, having the lower end B immersed in a cistern of mercury C. To the upper end is attached a metal tube, which communicates with the condenser, in which a constant vacuum, or rather high degree of rarefaction, is sustained. The same vacuum must, therefore, exist in the tube A B, above the level of the mercury; and the atmospheric pressure on the surface of the mercury in the cistern C will force the mercury up in the tube A B, until the column which is suspended in it is equal to the difference between the atmospheric pressure and the pressure of the uncondensed steam. The difference between the column of mercury sustained in this instrument and in the common barometer will determine the strength of the uncondensed steam, allowing a force proportional to one pound per square inch for every two inches of mercury in the difference of the two columns. In a well-constructed engine, which is in good order, there is very little difference between the altitude in the barometer-gauge and the common barometer.

To compute the force with which the piston descends, thus becomes a very simple arithmetical process. First ascertain the difference of the levels of the mercury in the steam-gauge. This gives the excess of the steam pressure above the atmospheric pressure. Then find the height of the mercury in the barometer-gauge. This gives the excess of the atmospheric pressure above the uncondensed steam. Hence, if these two heights be added together, we shall obtain the excess of the impelling force of the steam from the boiler on the one side of the piston, above the resistance of the uncondensed steam on the other side. This will give the effective impelling force. Now, if one pound be allowed for every two inches of mercury in the two columns just mentioned, we shall have the number of pounds of impelling pressure on every square inch of the piston. Then if the number of square inches in the section of the piston be found, and multiplied by the number of pounds on each square inch, the whole effective force with which it moves will be obtained.

In the computation of the power of the engine, however, all this force, thus computed, is not to be allowed as the effective working power. For it requires some force, and by no means an inconsiderable portion, to move the engine itself, even when unloaded; all this, therefore, which is spent in overcoming friction, &c. is to be left out of account, and only the balance set down as the effective working power.

From what we have stated, it appears that in order to estimate the effective force with which the piston is urged, it is necessary to refer to both the barometer and the steam-gauge. This double computation may be obviated by making one gauge serve both purposes. If the end C of the steam-gauge ([fig. 38].) instead of communicating with the atmosphere, were continued to the condenser, we should have the pressure of the steam acting upon the mercury in the tube B A, and the pressure of the uncondensed vapour which resists the piston acting on the mercury in the tube B C. Hence the difference of the levels of the mercury in the tubes will at once indicate the difference between the force of the steam and that of the uncondensed vapour, which is the effective force with which the piston is urged.

(70.) To secure the boiler from accidents arising from the steam becoming too strong, a safety valve is used, similar to those described in Papin's steam engine, loaded with a weight equal to the strength which the steam is intended to have above the atmospheric pressure; for it is found expedient, even in condensing engines, to use the steam of a pressure somewhat above that of the atmosphere.

Besides this valve, another of the very opposite kind is sometimes used. Upon stopping the engine, and extinguishing the fire, it is found that the steam condensed within the boiler produces a vacuum; so that the atmosphere, pressing on the external surface of the boiler, has a tendency to crush it. To prevent this, a safety valve is provided, which opens inwards, and which being forced open by the atmospheric pressure when a vacuum is produced within, the air rushes in, and a balance is obtained between the pressures within and without.