(77.) The use of two cylinders was revived by Arthur Woolf, in 1804, who, in this and the succeeding year, obtained patents for the application of steam raised under a high pressure to double-cylinder engines. The specification of his patent states, that he has proved by experiment that steam raised under a safety-valve loaded with any given number of pounds upon the square inch, will, if allowed to expand into as many times its bulk as there are pounds of pressure on the square inch, have a pressure equal to that of the atmosphere. Thus, if the safety-valve be loaded with four pounds on the square inch, the steam, after expanding into four times its bulk, will have the atmospheric pressure. If it be loaded with 5, 6, or 10 lbs. on the square inch, it will have the atmospheric pressure when it has expanded into 5, 6, or 10 times its bulk, and so on. It was, however, understood in this case, that the vessel into which it was allowed to expand should have the same temperature as the steam before it expands.
It is very unaccountable how a person of Mr. Woolf's experience in the practical application of steam could be led into errors so gross as those involved in the averments of this patent; and it is still more unaccountable how the experiments could have been conducted which led him to conclusions not only incompatible with all the established properties of elastic fluids—properties which at that time were perfectly understood—but even involving in themselves palpable contradiction and absurdity. If it were admitted that every additional pound avoirdupois which should be placed upon the safety-valve would enable steam, by its expansion into a proportionally enlarged space, to attain a pressure equal to the atmosphere, the obvious consequence would be, that a physical relation would subsist between the atmospheric pressure and the pound avoirdupois! It is wonderful that it did not occur to Mr. Woolf, that, granting his principle to be true at any given place, it would necessarily be false at another place where the barometer would stand at a different height. Thus if the principle were true at the foot of a mountain, it would be false at the top of it; and if it were true in fair weather, it would be false in foul weather, since these circumstances would be attended by a change in the atmospheric pressure, without making any change in the pound avoirdupois.[23]
The method by which Mr. Woolf proposed to apply the principle which he imagined himself to have discovered was by an arrangement of cylinders similar to those of Hornblower, but having their magnitudes proportioned to the greater extent of expansion which he proposed to use. Two cylinders, like those of Hornblower, were placed under the working beam, having their piston-rods at distances from the axis proportioned to the lengths of their respective strokes. The relative magnitudes of the cylinders A and B must be adjusted according to the extent to which the principle of expansion is intended to be used. The valves C C´ were placed at each end of the lesser cylinder in tubes communicating with the boiler, so as to admit steam on each side of the lesser piston, and cut it off at pleasure. A tube, D´, formed a communication between the upper end of the lesser and lower end of the greater cylinder, which communication is opened and closed at pleasure by the valve E´. In like manner, the tube D forms a communication between the lower end of the lesser cylinder and the upper end of the greater, which may be opened and closed by the valve E. The top and bottom of the greater cylinder communicated with the condenser by valves F´ F.
Let us suppose that the air is blown from the engine in the usual way, all the valves closed, and the engine ready to start, the pistons being at the top of the cylinders. Open the valves C, E, and F. The steam which occupies the greater cylinder below the piston will now pass into the condenser through F, leaving a vacuum below the piston. The steam which is in the lesser cylinder below the piston will pass through D and open the valve E, and will press down the greater piston. The steam from the boiler will flow in at C, and press on the lesser piston. At first the whole motion will proceed from the pressure upon the greater piston, since the steam, both above and below the lesser piston, has the same pressure. But, as the pistons descend, the steam below the less passing into the greater cylinder, expands into a greater space, and consequently exerts a diminished pressure, and, therefore, the steam on the other side exerting an undiminished pressure, acquires an impelling force exactly equal to the pressure lost in the expansion of the steam between the two pistons. Thus both pistons will be pressed to the bottoms of their respective cylinders. It will be observed that in the descent the greater piston is urged by a continually decreasing force, while the lesser is urged by continually increasing force.
Upon the arrival of the pistons at the bottoms of the cylinders, let the valves, C, E, F be closed, and C´, E´, F´ be opened, as in [fig. 44]. The steam which is above the greater piston now flows through F´ into the condenser, leaving the space above the piston a vacuum. The steam which is above the lesser piston passes through E´ and D´ below the greater, while the steam from the boiler is admitted through C´ below the lesser piston. The pressure of the steam entering through E´ below the greater piston, pressing on it against the vacuum above it, commences the ascent. In the mean time the steam above the lesser piston passing into the enlarged space of the greater cylinder, loses gradually its elastic force, so that the steam entering from the boiler at C´ becomes in part effective, and the ascent is completed under exactly the same circumstances as the descent, and in this way the process is continued.
It is evident that the valves may be easily worked by the mechanism of the engine itself.
In this arrangement the pistons ascend and descend together, and their rods must consequently be attached to the beam at the same side of the centre. It is sometimes desirable that they should act on different sides of the centre of the beam, and consequently that one should ascend while the other descends. It is easy to arrange the valves so as to effect this. In [fig. 45]., the lesser piston is at the bottom of the cylinder, and the greater at the top. On opening the valves C´, E´, F´, a vacuum is produced below the greater piston, and steam flows from the lesser cylinder, through E´, above the greater piston, and presses it down. At the same time steam being admitted from the boiler through C´ below the lesser piston, forces it up against the diminishing force of the steam above it, which expands into the greater cylinder. Thus as the greater piston descends the lesser ascends. When each has traversed its cylinder, the valves C´, E´, F´ being closed, and C, E, F opened, the lesser piston will descend, and the greater ascend, and so on.
(78.) The law according to which the elastic force of steam diminishes as it expands, of which Mr. Woolf appears to have been entirely ignorant, is precisely similar to the same property in air and other elastic fluids. If steam expands into twice or thrice its volume, it will lose its elastic force in precisely the same proportion as it enlarges its bulk; and therefore will have only a half or a third of its former pressure, supposing that as it expands its temperature is kept up. Although Mr. Woolf's patent contained the erroneous principle which we have noticed, yet, so far as his invention suggested the idea of employing steam at a very high-pressure, and allowing it to expand in a much greater degree than was contemplated either by Watt or Hornblower, it became the means of effecting a considerable saving in fuel; for engines used for pumping on a large scale, the steam being produced under a pressure of forty or fifty pounds or more upon the square inch, might be worked first through a small space with intense force, and the communication with the boiler being then cut off, it might be allowed, with great advantage, to expand through a very large space. Some double-cylinder engines upon this principle have been worked in Cornwall, with considerable economy. But the form in which the expansive principle, combined with high pressure, is now applied in the engines used for raising water from the mines, is that in which it was originally proposed by Watt. A single cylinder of considerable length is employed; the piston is driven through a small proportion of this length by steam, admitted from the boiler at a very intense pressure: the steam being then cut off, the piston is urged by the expansive force of the steam which has been admitted, and is by that means brought to the bottom of the cylinder.
It is evident, under such circumstances, that the pressure of the steam admitted from the boiler must be much greater than the resistance opposed to the piston, and that the motion of the piston must, in the first instance, be accelerated and not uniform. If the piston moved from the commencement with a uniform motion, the pressure of the steam urging it must necessarily be exactly equal to the resistance opposed to it, and then cutting off the supply of steam from the boiler, the piston could only continue its motion by inertia, the steam immediately becoming of less pressure than the resistance; and after advancing through a very small space, the piston would recoil upon the steam, and come to a state of rest. The steam, however, at the moment it is cut off being of much greater pressure than the amount of resistance upon the piston, will continue to drive the piston forward, until by its expansion its force is so far diminished as to become equal to the resistance of the piston. From that point the impelling power of the steam will cease, and the piston will move forward by its inertia only. The point at which the steam is cut off should therefore be so regulated that it shall acquire a pressure equal to the resistance on the piston by its expansion, just at such a distance from the end of the stroke as the piston may be able to move through by its inertia. It is evident the adjustment of this will require great care and nicety of management.
(79.) In 1797 a patent was granted to the Rev. Mr. Cartwright, a gentleman well known for other mechanical inventions, for some improvements in the steam-engine. His contrivance is at once so elegant and simple, that, although it has not been carried into practice, we cannot here pass it over without notice.