Several methods suggest themselves to increase the surface of water in contact with a given quantity of air passing through it. This would be accomplished by causing the air to pass between plates placed near each other, so as to divide the current into thin strata, having between them strata of water, or it might be made to pass between tubes differing slightly in diameter, the water passing through an inner tube, and being also in contact with the external surface of the outer tube. Such a method would be similar in principle to the steam-jacket used in Watt's steam engines, or to the condenser of Cartwright's engine already described. But, considering the facility of constructing small tubes, and of placing them in the boiler, that method, perhaps, is, on the whole, the best in practice; although the shape of a tube, geometrically considered, is most unfavourable for the exposure of a fluid contained in it to its surface. The air which passes from the fire-chamber, being subdivided as it passes through the boiler by a great number of very small tubes, may be made to impart all its excess of heat to the water before it issues into the chimney. This is all which the most refined contrivance can effect. The Rocket engine was traversed by 25 tubes, each 3 inches in diameter; and the principle has since been carried to a much greater extent.
The abstraction of a great quantity of heat from the air before it reaches the chimney is attended with one consequence, which, at first view, would present a difficulty apparently insurmountable; the chimney would, in fact, lose its power of draught. This difficulty, however, was removed by using the waste steam, which had passed from the cylinder after working the engine, for the purpose of producing a draught. This steam was urged through a jet presented upwards in the chimney, and driven out with such force in that direction as to create a sufficient draught to work the furnace.
It will be observed that the principle of draught in the Novelty is totally distinct from this: in that engine the draught is produced by a bellows worked by the engine. The question, as far as relates to these two methods, is, whether more power is lost in supplying the steam through the jet, as in the Rocket, or in working the bellows, as in the Novelty. The force requisite to impel the steam through the jet must be exerted by the returning stroke of the piston, and, consequently, must rob the working effect to an equivalent amount. On the other hand, the power requisite to work the bellows in the Novelty must be subducted from the available power of the engine. The former method is found to be the more effectual and economical.
The importance of these details will be understood, when it is considered that the only limit to the attainment of speed by locomotive engines is the power to produce in a given time a certain quantity of steam. Each stroke of the piston causes one revolution of the wheels, and consumes two cylinders full of steam: consequently, a cylinder of steam corresponds to a certain number of feet of road travelled over: hence it is that the production of a rapid and abundant supply of heat, and the imparting of that heat quickly and effectually to the water, is the key to the solution of the problem to construct an engine capable of rapid motion.
The method of subdividing the flue into tubes was carried much further by Mr. Stephenson after the construction of the Rocket; and, indeed, the principle was so very obvious, that it is only surprising that, in the first instance, tubes of smaller diameter than 3 inches were not used. In engines since constructed, the number of tubes vary from 90 to 120, the diameter being reduced to 2 inches or less, and in some instances tubes have been introduced, even to the number of 150, of 1-1/2 inch diameter. In the Meteor, 20 square feet are exposed to radiation, and 139 to the contact of heated air; in the Arrow, 20 square feet to radiation, and 145 to the contact of heated air. The superior economy of fuel gained by this means will be apparent by inspecting the following table, which exhibits the consumption of fuel which was requisite to convey a ton weight a mile in each of four engines, expressing also the rate of the motion:—
| Engines. | Average rate of speed in miles per hour. | Consumption of Coke in pounds per ton per mile. | |
| No. 1. | Rocket | 14 | 2·41 |
| 2. | Sanspareil | 15 | 2·47 |
| 3. | Phœnix | 12 | 1·42 |
| 4. | Arrow | 12 | 1·25 |
(92.) Since the period at which the railway was opened for the actual purposes of transport, the locomotive engines have been in a state of progressive improvement. Scarcely a month has passed without suggesting some change in the details, by which fuel might be economised, the production of steam rendered more rapid, the wear of the engine rendered slower, the proportionate strength of the different parts improved, or some other desirable end obtained. The consequence of this has been, that the particular engines to which we have alluded, and others of the same class, without having, as it were, lived their natural life, or without having been worn out by work, have been laid aside to give place to others of improved powers. By the exposure of the cylinders to the atmosphere in the Rocket, and engines of a similar form, a great waste of heat was incurred, and it was accordingly determined to remove them from the exterior of the boiler, and to place them within a casing immediately under the chimney: this chamber was necessarily kept warm by its proximity to the end of the boiler, but more by the current of heated air which constantly rushed into it from the tubes. This change, also, rendered necessary another, which improved the working of the engine. In the earlier engines the motion of the piston was communicated to the wheel by a connecting rod attached to one of the spokes on the exterior of the wheel, as represented in [fig. 55]. By the change to which we have just alluded, the cylinders being placed between the wheels under the chimney, this mode of working became inapplicable, and it was considered better to connect the piston-rods with two cranks placed at right angles on the axles of the great wheels. By this means, it was found that the working of the machine was more even, and productive of less strain than in the former arrangement. On the other hand, a serious disadvantage was incurred by the adoption of a cranked axle. The weakness necessarily arising from such a form of axle could only be counterbalanced by great thickness and weight of metal; and even this precaution does not prevent the occasional fracture of such axles at the angles of the cranks. The advantages, however, of this plan, on the whole, are considered to predominate.
In the most improved engines in present use two safety-valves are provided, of which only one is in the power of the engine-man. The tubes being smaller and more numerous than in the earlier engines, the heat is more completely extracted from the air before it enters the chimney. A powerful draft is rendered still more necessary by the smallness of the tubes: this is effected by forcing the steam which has worked the pistons through a contracted orifice, presented upwards in the chimney, by the regulation of which any degree of draft may be obtained.
One of the most improved engines at present in use is represented in [fig. 61].
A represents the cylindrical boiler, the lower half of which is traversed by tubes, as described in the Rocket. They are usually from 80 to 100 in number, and about 1-1/2 inch in diameter; the boiler is about 7 feet in length; the fire-chamber is attached to one end of it, at F, as in the Rocket, and similar in construction; the cylinders are inserted in a chamber at the other end, immediately under the chimney. The piston-rods are supported in the horizontal position by guides; and connecting rods extend from them, under the engine, to the two cranks placed on the axle of the large wheels. The effects of any inequality in the road are counteracted by springs, on which the engine rests; the springs being below the axle of the great wheels, and above that of the less. The steam is supplied to the cylinders, and withdrawn, by means of the common sliding valves, which are worked by an eccentric wheel placed on the axle of the large wheels of the carriage. The motion is communicated from this eccentric wheel to the valve by sliding rods. The stand is placed for the attendant at the end of the engine, next the fire-place, F; and two levers, L, project from the end, which communicate with the valves by means of rods, by which the engine is governed, so as to stop or reverse the motion.