It is the property of animal power, that within certain limits its energy can be put forth at will, according to the exigency of the occasion; but the intensity of mechanical power, in the instance now considered, cannot so conveniently be varied, except indeed within narrow limits.

In the application of locomotive engines upon railways the difficulty arising from inclined planes has been attempted to be surmounted by several methods, which we shall now explain.

1. Upon arriving at the foot of the plane the load is divided, and the engine carries it up in several successive trips, descending the plane unloaded after each trip. The objection to this method is the delay which it occasions,—a circumstance which is incompatible with a large transport of passengers. From what has been stated, it would be necessary, when the engine is fully loaded on a level, to divide its load into four parts, to be successively carried up when the incline rises 52 feet per mile. This method has been practised in the transport of merchandise occasionally, when heavy loads were carried on the Liverpool and Manchester line, upon the Rainhill incline.

2. A subsidiary or assistant locomotive engine may be kept in constant readiness at the foot of each incline, for the purpose of aiding the different trains, as they arrive, in ascending. The objection to this mode is the cost of keeping such an engine with its boiler continually prepared, and its steam up. It would be necessary to keep its fire continually lighted, whether employed or not; otherwise, when the train would arrive at the foot of the incline, it should wait until the subsidiary engine was prepared for work. In cases where trains would start and arrive at stated times, this objection, however, would have less force. This method is at present generally adopted on the Liverpool and Manchester line. This method, however, cannot be profitably applied to planes of any considerable length.

3. A fixed steam engine may be erected on the crest of the incline, so as to communicate by ropes with the train at the foot. Such an engine would be capable of drawing up one or two trains together, with their locomotives, according as they would arrive, and no delay need be occasioned. This method requires that the fixed engine should be kept constantly prepared for work, and the steam continually up in the boiler. This expedient is scarcely compatible with a large transit of passengers, except at the terminus of a line.

4. In working on the level, the communication between the boiler and the cylinder in the locomotives may be so restrained by partially closing the throttle valve, as to cause the pressure upon the piston to be less in a considerable degree than the pressure of steam in the boiler. If under such circumstances a sufficient pressure upon the piston can be obtained to draw the load on the level, the throttle valve may be opened on approaching the inclined plane, so as to throw on the piston a pressure increased in the same proportion as the previous pressure in the boiler was greater than that upon the piston. If the fire be sufficiently active to keep up the supply of steam in this manner during the ascent, and if the rise be not greater in proportion than the power thus obtained, the locomotive will draw the load up the incline without further assistance. It is, however, to be observed, that in this case the load upon the engine must be less than the amount which the adhesion of its working wheels with the railroad is capable of drawing; for this adhesion must be adequate to the traction of the same load up the incline, otherwise whatever increase of power might be obtained by opening the throttle valve, the drawing wheels would revolve without causing the load to advance. This method has been generally practised upon the Liverpool and Manchester line in the transport of passengers; and, indeed, it is the only method yet discovered, which is consistent with the expedition necessary for that species of traffic. The objections to this method are, the necessity of maintaining a much higher pressure in the boiler than is sufficient for the purposes of the load upon more level parts of the line.

In the practice of this method considerable aid may be derived also by suspending the supply of feeding water during the ascent. It will be recollected that a reservoir of cold water is placed in the tender which follows the engine, and that the water is driven from this reservoir into the boiler by a forcing-pump, which is worked by the engine itself. This pump is so constructed that it will supply as much cold water as is equal to the evaporation, so as to maintain constantly the same quantity of water in the boiler. But it is evident, on the other hand, that the supply of this water has a tendency to check the rate of evaporation, since in being raised to the temperature of the water with which it mixes, it must absorb a considerable portion of the heat supplied by the fire. With a view to accelerate the production of steam, therefore, in ascending the inclines, the engine-man may suspend the action of the forcing-pump, and thereby stop the supply of cold water to the boiler; the evaporation will go on with increased rapidity, and the exhaustion of water produced by it will be repaid by the forcing-pump on the next level, or still more effectually on the next descending incline. Indeed the feeding pump may be made to act in descending an incline if necessary, when the action of the engine itself is suspended, and when the train descends by its own gravity, in which case it will perform the part of a brake upon the descending train.

This method, on railroads intended for passengers, may be successfully applied on inclines which do not exceed 18 feet in a mile; and, with a sacrifice of the expense of locomotive power, inclines so steep as 36 feet in a mile may be worked in this manner. As, however, the sacrifice is considerable, it will, perhaps, be always better to work the more steep inclines by assistant engines.

5. The mechanical connexion between the piston of the cylinder and the points of contact of the working wheels with the road may be so altered, upon arriving at the incline, as to give the piston a greater power over the working wheels. This may be done in an infinite variety of ways, but hitherto no method has been suggested sufficiently simple to be applicable in practice; and even were any means suggested which would accomplish this, unless the intensity of the impelling power were at the same time increased, it would necessarily follow that the speed of the motion would be diminished in exactly the same proportion as the power of the piston over the working wheels would be increased. Thus, on the inclined plane, which rises 55 feet per mile, upon the Liverpool line, the speed would be diminished to nearly one fourth of its amount upon the level.

Whatever be the method adopted to surmount inclined planes upon a railway, inconvenience attends the descent upon them. The motion down the incline by the force of gravity is accelerated; and if the train be not retarded, a descent of any considerable length, even at a small elevation, would produce a velocity which would be attended with great danger. The shoe used to retard the descent down hills on turnpike roads cannot be used upon railroads, and the application of brakes to the faces of the wheels is likewise attended with some uncertainty. The friction produced by the rapid motion of the wheel sometimes sets fire to wood, and iron would be inadmissible. The action of the steam on the piston may be reversed, so as to oppose the motion of the wheels; but even this is attended with peculiar difficulty.