In general, when heat is imparted to a body, an enlargement of bulk will be the immediate consequence, and at the same time the body will become warmer to the touch. These two effects of expansion and increase of warmth going on always together, the one has been taken as a measure of the other; and upon this principle the common thermometer is constructed. That instrument consists of a tube of glass, terminated in a bulb, the magnitude of which is considerable, compared with the bore of the tube. The bulb and part of the tube are filled with mercury, or some other liquid. When the bulb is exposed to any source of heat, the mercury contained in it, being warmed or increased in temperature, is at the same time increased in bulk, or expanded or dilated, as it is called. The bulb not having sufficient capacity to contain the increased bulk of mercury, the liquid is forced up in the tube, and the quantity of expansion is determined by observing the ascent of the column in the tube.

An instrument of this kind, exposed to heat or cold, will fluctuate accordingly, the mercury rising as the heat to which it is exposed is increased, and falling by exposure to cold. In order, however, to render it an accurate measure of temperature, it is necessary to connect with it a scale by which the elevation or depression of the mercury in the tube may be measured. Such a scale is constructed for thermometers in this country in the following manner:—Let us suppose the instrument immersed in a vessel of melting ice: the column of mercury in the tube will be observed to fall to a certain point, and there maintain its position unaltered: let that point be marked upon the tube. Let the instrument be now transferred to a vessel of boiling water at a time when the barometer stands at the altitude of 30 inches: the mercury in the tube will be observed to rise until it attain a certain elevation, and will there maintain its position. It will be found, that though the water continue to be exposed to the action of the fire, and continue to boil, the mercury in the tube will not continue to rise, but will maintain a fixed position: let the point to which the mercury has risen, in this case, be likewise marked upon the tube.

The two points, thus determined, are called the freezing and the boiling points. If the distance upon the tube between these two points be divided into 180 equal parts, each of these parts is called a degree; and if this division be continued, by taking equal divisions below the freezing point, until 32 divisions be taken, the last division is called the zero, or nought of the thermometer. It is the point to which the mercury would fall, if the thermometer were immersed in a certain mixture of snow and salt. When thermometers were first invented, this point was taken as the zero point, from an erroneous supposition that the temperature of such a mixture was the lowest possible temperature.

The degrees upon the instrument thus divided are counted upwards from the zero, and are expressed, like the degrees of a circle, by placing a small ° over the number. Thus it will be perceived that the freezing point is 32° of our thermometer, and the boiling-point will be found by adding 180° to 32°; it is therefore 212°.

The temperature of a body is that elevation to which the thermometer would rise when the mercury enclosed in it would acquire the same temperature. Thus, if we should immerse the thermometer, and should find that the mercury would rise to the division marked 100°, we should then affirm that the temperature of the water was 100°.

(9.) The dilatation which attends an increase of temperature is one of the most universal effects of heat. It varies, however, in different bodies: it is least in solid bodies; greater in liquids; and greatest of all in bodies in the aeriform state. Again, different solids are differently susceptible of this expansion. Metals are the most susceptible of it; but metals of different kinds are differently expansible.

As an increase of temperature causes an increase of bulk, so a diminution of temperature causes a corresponding diminution of bulk, and the same body always has the same bulk at the same temperature.

A flaccid bladder, containing a small quantity of air, will, when heated, become quite distended; but it will again resume its flaccid appearance when cold. A corked bottle of fermented liquor, placed before the fire, will burst by the effort of the air contained in it to expand when heated.

Let the tube A B ([fig. 5].) open at both ends, have one end inserted in the neck of a vessel C D, containing a coloured liquid, with common air above it; and let the tube be fixed so as to be air-tight in the neck: upon heating the vessel, the warm air inclosed in the vessel C D above the liquid will begin to expand, and will press upon the surface of the liquid, so as to force it up in the tube A B.

In bridges and other structures, formed of iron, mechanical provisions are introduced to prevent the fracture or strain which would take place by the expansion and contraction which the metal must undergo by the changes of temperature at different seasons of the year, and even at different hours of the day.