Fig. 23.—Wings of small and large aspect ratio

Aspect Ratio.—The third factor in wing efficiency has to do with the plan shape. It was early found that square wings were not much good, and that if you made them wide in span like those of a bird, the efficiency was best (see Fig. [23]). Aspect ratio is the term which gives the relation of the span to the fore and aft dimension of the wing, and this relation is usually equal to six or so. The reason why large aspect ratios are advantageous is as follows:

The tips of all wings are inefficient, because they allow the air to slip sideways around the ends, and there is all the trouble of disturbing this air without extracting any considerable lift from it. In a wide-span wing these inefficient wing tips are only a small percentage of the total area, but in a small-span wing they may be an important consideration (see Fig. [24]).

Fig. 24.—Diagram illustrating aspect-ratio effect.

Arrows show direction of air flow past plate; note that air escapes sideways around sides of plate. This phenomenon occurs at the tips of all airplane wings and accounts for small efficiency of narrow-span wings.

Wing Arrangements.—All the foregoing remarks in this chapter have applied only to a single wing. They apply in general to double or triple wings (biplanes and triplanes), but the matter of arranging multiple wings affects the efficiency.

The monoplane with its single layer of wings is the most efficient type of flying machine. We find if we arrange wings into the biplane shape that the presence of the upper wing interferes with the vacuum formed above the lower wing, and the efficiency decreases (see Fig. [22]). The same is true of the triplane and the quadruplane arrangement. If all we wanted in airplanes was efficiency, we would use monoplanes, but the biplane is pretty popular now in spite of its low efficiency; this is because it can be much more strongly trussed than the monoplane, and also because of the fact that sufficient area may be secured with less span of wings.

It may be said that the low efficiency of the biplane can be somewhat relieved by spacing the upper and lower wings at a considerable distance apart; but if they are spaced at a distance much greater than the chord, it requires extra long struts and wires, and the resistance and weight of these will offset the advantage of wider spacing; so that practically biplane-wing efficiency may be taken as 85 per cent. of monoplane efficiency.