Occasionally, on an old canal, one watercourse crosses another, the lands irrigated being at different levels, but such crossings do not often occur in systems of watercourses laid out according to modern methods. They are, however, quite legitimate.

The lines of the main watercourses are sketched on the map, their irrigation boundaries shown on it, and F.S. discharges allotted to them according to the areas which are to be dependent on them. In order that this may conveniently be done the “full supply duty” or “full supply factor” for the distributary is obtained. It bears the same ratio to the ordinary duty that the mean supply bears to the full supply. The total of the F.S. discharges of all the watercourses should, with an allowance for loss by absorption in the distributary, be the same as the F.S. discharge of the distributary. If the results are very discrepant it shows that the sizes of the outlets need revision. Possibly they may all be too large.

In “colonization” schemes where a canal is constructed to irrigate waste lands—which are the property of Government and which are divided into square blocks and given out to colonists—Government has complete control of the watercourse system, and can arrange it exactly as desired, but in other cases landowners often strenuously oppose the passage of watercourses through their lands. Compulsory procedure according to legal methods is tedious, but the practical rule is not to let anyone have water until any watercourses which are to pass through his land have been not only agreed to but constructed.

In ordinary cases Government possesses no power as to the precise line on which a watercourse is dug. It fixes the site of the outlet and assigns certain land to it, and sketches out the line of the watercourse. If the people choose to alter the line they can do so, but great alterations in the main watercourses are not generally feasible.

The positions of the outlets[16] having been settled after discussion with the cultivators, a table is prepared showing the chainage of the outlets, the probable head or difference between the F.S. level of the distributary and of the watercourse, and the F.S. discharge. From this the sizes of the outlets are calculated and shown in another column. If the length of the outlet barrel is not more than 5 or 6 times the diameter—in the case of a barrel whose cross section is not round or square, the mean diameter—the discharge can be calculated as for a “short tube,” but if longer the formula for flow in pipes should be used, allowance being, of course, made for the head lost at the entrance. The outlets generally consist at first of wooden “shoots” or long tubes, rectangular in cross section. This is because, after they have been tested by a year or two years’ working, the sizes nearly always require adjustment and the cultivators often wish to have the site shifted.

[16] The positions can be slightly altered by the Engineers for any sufficient reason.

Fig. 11.

The uncertainty as to the proper size of an outlet is due to several causes. If the command is very good there may be a clear fall from the outlet into the watercourse. In this case the discharge depends only on the depth of water in the distributary, and is known pretty accurately. But ordinarily the outlet is submerged, and its discharge depends on the difference between the water levels in the distributary and in the watercourse. The latter level is not fixed. The cultivators can lower it, to an extent which depends chiefly on the distance of the fields from the distributary, by deepening or widening the watercourse. In this way the discharge of the watercourse is increased except when a dam is temporarily made in it for the purpose of irrigating any comparatively high land. This uncertainty as to the discharge can in some cases be got over by building a cistern ([Fig. 11]). This has the same effect as raising the level of the barrel, the real outlet being no longer submerged, and the discharge depending on the depth of the crest of the overfall below the water in the distributary. But such cisterns add greatly to the cost of an outlet, and they can only be adopted when there is good command. A great cause of uncertainty as to the proper size of an outlet is the variability of the duty of the water on the watercourse. The soil may be clayey or sandy, the watercourse may be short or long, the crops grown may be ordinary ones or may be chiefly rice, which requires three or four times as much water as most other crops, and the cultivators may be careful or the opposite. Again, the people may, if the outlet gives a plentiful supply, often keep it closed, but there is no record of such closures nor would the people admit that they occur. These causes may all operate in one direction—on a whole distributary this cannot happen to the same extent—and thus enormous differences in duty may occur. There is no way of arriving at the proper size for an outlet except trial. Observations of the discharges of the outlets are of very limited use. The discharge may vary according to the particular fields being irrigated. Observations of discharges will be useful in cases where the people complain, or when the discharge is obviously much greater or much less than intended and will in such cases enable temporary adjustments to be made, but by placing a dam in a watercourse and turning the water on to a high field near its head the people can make it appear that the discharge is only a fraction of what it should be.

On any distributary there are generally some watercourses which have a poor command, the head at the outlet being, say, ·1 ft. or even less. Probably the irrigation is a good deal less than it should be. In such cases the rules may be set aside and a liberal size of outlet given. The size may be 2 or 3 times the calculated size. There is no harm in this. The irrigation cannot increase much. Similar cases frequently occur on inundation canals especially near the heads of canals or distributaries.