Heterochrony shows itself, as a rule, either as an acceleration or as a retardation of developmental events, as compared with their relative time of occurrence during phylogeny. Thus the notochord, the brain, the eyes, the heart, appear earlier in the ontogenetic than in the phylogenetic series, while, on the other hand, the septum of the auricles appears in the development of the higher Vertebrates before the ventricular septum, which is undoubtedly a reversal of the phylogenetic order.
Cases of heterotopy, or of organs being developed in a position or a germ-layer other than that in which they originally arose in phylogeny, are not so easy to find. According to Haeckel, the origin of the generative products in the mesoderm is a heterotopic phenomenon, for he considers that they must have originated phylogenetically in one of the two primary layers, ectoderm or endoderm.
It is worthy of note that the help of comparative anatomy is admittedly required in deciding what processes are palingenetic and what cenogenetic (p. 412).
Haeckel's morphological notions, and particularly his biogenetic law, excited a good deal of adverse criticism from men like His, Claus, Salensky, Semper and Goette. Nor was his principal work, the General Morphology, received with much favour. Nevertheless, since he did express, though in a crude, dogmatic and extreme manner, the main hypotheses upon which evolutionary morphology is founded, his historical importance is considerable. He cannot perhaps be regarded as typical of the morphologists of his time—he was too trenchantly materialistic, too much the populariser of a crude and commonplace philosophy of Nature. In point of concrete achievement in the field of pure research he fell notably behind many of his contemporaries.
His friend, Carl Gegenbaur, who gained a great and well-deserved reputation by his masterly studies on vertebrate morphology,[380] was a sounder man, and probably exercised a wider and certainly a more wholesome influence upon the younger generation of professional morphologists than the more brilliant Haeckel. It is true that in his famous Grundzüge der vergleichenden Anatomie, the second edition of which, published in 1870, soon came to be regarded as the classical text-book of evolutionary morphology, Gegenbaur enunciated very much the same general principles as Haeckel, and referred to the Generelle Morphologie as the chief and fundamental work on animal morphology. But in Gegenbaur's pages the Haeckelian doctrines are modified and subdued by the strong commonsense and thorough appreciation of the older classical or Cuvierian morphology that characterise Gegenbaur's work. According to Haeckel,[381] Gegenbaur was greatly influenced by J. Müller, who, as we know, laid as much stress on function as on form.
The "General Part" of Gegenbaur's text-book is in many ways a significant document and deserves close attention.
We note first of all that physiology and morphology are considered by Gegenbaur to be entirely distinct sciences, with different subject-matter and different methods. "The task of physiology is the investigation of the functions of the animal body or of its parts, the referring back of these functions to elementary processes and their explanation by general laws. The investigation of the material substratum of these functions, of the form of the body and its parts, and the explanation of this form, constitute the task of Morphology" (2nd ed., p. 3).
Morphology falls naturally into two divisions—comparative anatomy and embryology. The method of comparative anatomy is comparison (p. 6), and in employing this method account is to be taken of "the spatial relations of the parts to one another, their number, extent, structure, and texture." Through comparison one is enabled to arrange organs in continuous series, and it comes out very clearly during this proceeding "that the physiological value of an organ is by no means constant throughout the different form-states of the organ, that an organ, through the mere modification of its anatomical relations, can subserve very different functions. Exclusive regard for their physiological functions would place morphologically related organs in different categories. From this it follows that in comparative anatomy we should never in the first place consider the function of an organ. The physiological value comes only in the second place into consideration, when we have to reconstruct the relations to the organism as a whole of the modification which an organ has undergone as compared with another state of it. In this way comparative anatomy shows us how to arrange organs in series; within these series we meet with variations which sometimes are insignificant and sometimes greater in extent; they affect the extent, number, shape, and texture of the parts of an organ, and can even, though only in a slight degree, lead to alterations of position" (p. 6).
Geoffroy St Hilaire would have subscribed to every word of this vindication of his "principle of connections."
Between comparative anatomy and embryology there exists a close connection, for the one throws light on the other. "While in some cases the same organ shows only slight modifications in its development from its early beginnings to its perfect state, in other cases the organ is subjected to manifold modifications before it reaches its definitive form; we see parts appear in it which later disappear, we observe alterations in it in all its anatomical relations, alterations which may even affect its texture. This fact is of great importance, for those changes which an organ undergoes during its individual development lead through states which the organ in other cases permanently shows, or at the least the first appearance of the organ is the equivalent of a permanent state in another organism. If then the fully developed organ is in any special case so greatly modified that its proper relation to some organ-series is obscured, this relation may be cleared up by a knowledge of the organ's development. The earlier state indicated in this way enables one to find with ease the proper place for the organ and so insert it into an already known series. The relations which we observe in an organ-seriation are then the equivalent of processes which in certain cases take place in a similar manner during the individual development of an organ. Embryology enters therefore into the closest connection with comparative anatomy.... It teaches us to know organs in their earliest states, and connects them up with the permanent states of others, whereby they fill up the gaps which we meet with in the various series formed by the fully developed organs of the body" (pp. 6-7).