So far we have considered Geoffroy's theories in their application to the facts. We go on to discuss the theories themselves, and the general conception of living things which underlies them.

The principle of unity of plan and composition is the keynote of Geoffroy's work. It states that the same materials of organisation are to be found in all animals, and that these materials stand always in the same general spatial relations to one another. The "materials of organisation" are not necessarily organs in the physiological sense, and indeed the principle of the unity of plan cannot be upheld if the unity has reference to organs only. This became clear to Geoffroy, especially in his later years. In 1835 he wrote, speaking of the principle of the unity of plan, "I have, moreover, regenerated this principle, and obtained for it universality of application, by showing that it is not always the organs as a whole, but merely the materials composing each organ, that can be reduced to unity."[109] Even in the Philosophie anatomique he deals rather with parts than with organs; he deals, for instance, with the elementary parts of the sternum, not with the organ "sternum" in its totality. The functions of the sternum vary, and the primary protective function of the sternum may be assumed by quite other parts, e.g., by the clavicles in fish, which protect the heart.[110]

True homologies can be established between materials of organisation but not always between organs, which may be composed of different "materials."

Almost as a corollary to this comes the further view that form is of little importance in determining homologies. An organ is essentially an instrument for doing a particular kind of work, and its form is determined by its function. Organs which perform the same function are usually similar in form though the elementary materials composing them may be different. This is seen in many cases of convergence. Organs, therefore, which perform the same function and are similar in external form are not necessary homologous. Conversely, the same complex of materials, say a fore limb, may take on the most varied shapes according as the function of the organ changes—but homology remains though form changes. Accordingly, form is one of the least important elements to be considered in determining a homology. "Nature," he wrote in one of his early papers, "tends to repeat the same organs in the same number and in the same relations, and varies to infinity only their form. In accordance with this principle I shall have to draw my conclusions, in the determining the bones of the fish's skull, not from a consideration of their form, but from a consideration of their connections."[111]

Again, after comparing a vertebra of the Aurochs with an abdominal segment of the crab, he says, "I have insisted upon an identity which has extended to the least important relation of all, that of form."[112]

Geoffroy's morphological units or materials of organisation were in the case of the skeleton—with which his researches principally deal—the single bones. But the interesting point is that he sought his skeleton-units in the embryo, and considered each separate centre of ossification as a separate bone. Coalescence of bones originally separate is one of the most usual events in development, and it is an occurrence which, more than any other, tends to obscure homologies. Because of its coalescence with the maxillaries, the intermaxillary in man was not discovered until Vicq d'Azyr and Goethe found it separate in the embryo. Apparently quite independently of Goethe, Geoffroy hit upon this plan of seeking in the embryo the primary elements or materials of organisation. In an early paper on the skull of Vertebrates,[113] where he is concerned with showing that each bone of the fish's skull has its homologue in the skull of higher Vertebrates, he is faced with the difficulty that the skull of the fish has more bones than the skull of higher Vertebrates. "Having had the inspiration," he writes, "to reckon as many bones as there are distinct centres of ossification, and having made a consistent trial of this method, I have been able to appreciate the correctness of the idea: fish, in their earliest stages, are in the same conditions relatively to their development as the fœtuses of mammals, and hence bear out the theory" (p. 344). So, too, in dealing with the homologies of the sternal elements (supra, p. 57) he treats as separate bones the "annexes" of the sternum in birds, though these are separate only in the young.

If the same materials of organisation are present in all animals, and if they are arranged always in the same positions relatively to one another, how does it come about that animal forms are so varied, what explanation can be offered of the diversities of organic structure? Geoffroy's main answer to this question is his Loi de balancement. The law was enunciated by him already in 1807.[114] We take the following quotation, which represents his thought most nearly, from the Cours de l'histoire naturelle des Mammifères (1829). "According to our manner of regarding the organisation of mammals, there is only a single animal modified by the inverse reciprocal variation of all or some of its parts. Now, from the fact that there is only one single general animal, it follows that for each section of its components or for each of its organs there is available only a given quantity of formative materials. Now suppose that the distribution of these materials has not been made in such a way as to ensure an exact equilibrium between all the parts concerned, one organ will get more than its share, another less. My law of the compensation of organs is founded on these principles" (i., Leçon 16, p. 12). "The atrophy of one organ turns to the profit of another; and the reason why this cannot be otherwise is simple, it is because there is not an unlimited supply of the substance required for each special purpose."[115] The nutritive material available is limited for each species; if one part gets more than its share the other parts must get less—that is all the law means. As an example, take the minuteness of the episternals and xiphisternals in birds, as contrasted with the huge size of the entosternal. "The minuteness of the episternals and xiphisternals might be imputed to this gigantic piece diverting to its own profit the nutritive fluid, since the bigger it is the smaller these are."[116]

One has constantly to remember in dealing with Geoffroy's theories that he was not an evolutionist, but purely a morphologist. It is therefore, perhaps, to ask too much to require of him an explanation of the causes of diversity. The morphologist describes, classifies, generalises; he does not seek for causes. But we must leave this question aside in order to discuss how far Geoffroy's theory of the unity of plan and composition fits the facts. As Geoffroy himself admitted on several occasions, his theory was an à priori one, a theory hit upon by hasty induction, then erected into a principle and imposed upon the facts. No more than Goethe did he extract his principle from a sufficient mass of data.

Now he found his theory to be in its pure form unworkable; he found, for example, that the skeleton of fishes could not be compared directly, bone for bone, with the skeleton of higher Vertebrates; he had to admit differences of position of whole sets of organs in the two groups, he had to admit various metastases, before he could bring the skeleton of fish into line. And these metastases are due to functional requirements—for example, the forward position of sternum and thoracic organs in fish is an adaptation to swimming.

So he does not so much demonstrate the unity of plan of whole organisms as the unity of plan of particular corresponding parts of them. Thus he does not prove or attempt to prove that Articulates are in all points like Vertebrates, but simply that their skeleton is built upon the same plan as that of Vertebrates. The rest of the organs, while still comparable with the organs of Vertebrates, stand in different relations to the skeleton. An Articulate therefore, on his own showing, is not, as a whole, built upon the same general structural plan as a Vertebrate.