His only excursion into the realm of "transcendental anatomy" is his comparison of a Cephalopod to a doubled-up Vertebrate whose legs have become adherent to its head, whose alimentary canal has doubled upon itself in such a way as to bring the anus near the mouth (De Partibus, iv., 9, 684b). It is clear, however, that Aristotle did not seek to establish by this comparison any true homologies of parts, but merely analogies, thus avoiding the error into which Meyranx and Laurencet fell more than two thousand years later in their paper communicated to the Académie des Sciences, which formed the starting-point of the famous controversy between Cuvier and E. Geoffroy St Hilaire (see [Chap. V.], below).

Moreover, Aristotle did not so much compare a Cephalopod with a doubled-up Vertebrate as contrast Cephalopods (and also Testacea) with all other animals. Other animals have their organs in a straight line; Cephalopods and Testacea alone show this peculiar doubling up of the body.

(4) Aristotle was much struck with certain facts of correlation, of the interdependence of two organs which are not apparently in functional dependence on one another. Such correlation may be positive or negative; the presence of one organ may either entail the presence of the other, or it may entail its absence. Aristotle has various ways of explaining facts of correlation. He observed that no animal has both tusks and horns, but this fact could easily be explained on the principle that Nature never makes anything superfluous or in vain. If an animal is protected by the possession of tusks it does not require horns, and vice versa. The correlation of a multiple stomach with deficient development of the teeth (as in Ruminants) is accounted for by saying that the animal needs its complex stomach to make up for the shortcomings of its teeth! (De Partibus, iii., 14, 674b.) Other examples of correlation were not susceptible of this explanation in terms of final causes. He lays stress on the fact, in the main true, of the inverse development of horns and front teeth in the upper jaw, exemplified in Ruminants. He explains the fact in this way. Teeth and horns are formed from earthy matter in the body and there is not enough to form both teeth and horns, so "Nature by subtracting from the teeth adds to the horns; the nutriment which in most animals goes to the former being here spent on the augmentation of the latter" (De Partibus, iii., 2, 664a, trans. Ogle). A similar kind of explanation is offered of the fact that Selachia have cartilage instead of bone, "in these Selachia Nature has used all the earthy matter on the skin [i.e., on the placoid scales]; and she is unable to allot to many different parts one and the same superfluity of material" (De Partibus, ii., 9, 655a, trans. Ogle). Speaking generally, "Nature invariably gives to one part what she subtracts from another" (loc. cit., ii., 14, 658a).

This thought reappears again in the 19th century in E. Geoffroy St Hilaire's loi de balancement and also in Goethe's writings on morphology. For Aristotle it meant that Nature was limited by the nature of her means, that finality was limited by necessity. Thus in the larger animals there is an excess of earthy matter, as a necessary result of the material nature of the animal; this excess is turned by Nature to good account, but there is not enough to serve both for teeth and for horns (loc. cit., iii., 2, 663b).

But there are other instances of correlation which seem to have taxed even Aristotle's ingenuity beyond its powers. Thus he knew that all animals (meaning viviparous quadrupeds) with no front teeth in the upper jaw have cotyledons on their fœtal membranes, and that most animals which have front teeth in both jaws and no horns have no cotyledons (De Generatione, ii., 7). He offers no explanation of this, but accepts it as a fact.

We may conveniently refer here to one or two other ideas of Aristotle regarding the causes of form. He makes the profound remark that the possible range of form of an organ is limited to some extent by its existing differentiation. Thus he explains the absence of external (projecting) ears in birds and reptiles by the fact that their skin is hard and does not easily take on the form of an external ear (De Partibus, ii, 12). The fact of the inverse correlation is certain; the explanation is, though very vague, probably correct.

In one passage of the De Partibus Aristotle clearly enunciates the principle of the division of labour, afterwards emphasised by H. Milne-Edwards. In some insects, he says, the proboscis combines the functions of a tongue and a sting, in others the tongue and the sting are quite separate. "Now it is better," he goes on, "that one and the same instrument shall not be made to serve several dissimilar ends; but that there shall be one organ to serve as a weapon, which can then be very sharp, and a distinct one to serve as a tongue, which can then be of spongy texture and fit to absorb nutriment. Whenever, therefore, Nature is able to provide two separate instruments for two separate uses, without the one hampering the other, she does so, instead of acting like a coppersmith who for cheapness makes a spit and lampholder in one" (iv., 6, 683a).

(5) The first sentence of the Historia Animalium formulates, with that simplicity and directness which is so characteristic of Aristotle, the distinction between homogeneous and heterogeneous parts, in the mass the distinction between tissues and organs. "Some parts of animals are simple, and these can be divided into like parts, as flesh into pieces of flesh; others are compound, and cannot be divided into like parts, as the hand cannot be divided into hands, nor the face into faces. All the compound parts also are made up of simple parts—the hand, for example, of flesh and sinew and bone" (Cresswell, loc. cit., p. 1).

In the De Partibus Animalium he broadens the conception by adding another form of composition. "Now there are," he says, "three degrees of composition; and of these the first in order, as all will allow, is composition out of what some call the elements, such as earth, air, water, fire.... The second degree of composition is that by which the homogeneous parts of animals, such as bone, flesh, and the like, are constituted out of the primary substances. The third and last stage is the composition which forms the heterogeneous parts, such as face, hand, and the rest" (ii., 1, 646a, trans. Ogle).

In the Historia Animalium the homogeneous parts are divided into (1) the soft and moist (or fluid), such as blood, serum, flesh, fat, suet, marrow, semen, gall, milk, phlegm, fæces and urine, and (2) the hard and dry (or solid), such as sinew, vein, hair, bone, cartilage, nail, and horn. It would appear from this enumeration that Aristotle's distinction of simple and complex parts does not altogether coincide with our distinction of tissues and organs. We should not call vein a tissue, nor do we include under this heading non-living secretions. But in the De Partibus Animalium Aristotle, while still holding to the distinction set forth above, is alive to the fact that his simple parts include several different sorts of substances. He distinguishes among the homogeneous parts three sets. The first of these comprises the tissues out of which the heterogeneous parts are constructed, e.g., flesh and bone; the second set form the nutriment of the parts, and are invariably fluid; while the third set are the residue of the second and constitute the residual excretions of the body (ii., 2, 647b). He sees clearly the difficulty of calling vein or blood-vessel a simple part, for while a blood-vessel and a part of it are both blood-vessel, as we should say vascular tissue, yet a part of a blood-vessel is not a blood-vessel. There is form superadded to homogeneity of structure (ii., 2, 647b). Similarly for the heart and the other viscera. "The heart, like the other viscera, is one of the homogeneous parts; for, if cut up, its pieces are homogeneous in substance with each other. But it is at the same time heterogeneous in virtue of its definite configuration" (ii., 1, 647a, trans. Ogle).