Now, the condition of this mass implies a rotation about an imaginary axis—a rotation which, commencing with the absolute incipiency of the aggregation, has been ever since acquiring velocity. The very first two atoms which met, approaching each other from points not diametrically opposite, would, in rushing partially past each other, form a nucleus for the rotary movement described. How this would increase in velocity, is readily seen. The two atoms are joined by others:—an aggregation is formed. The mass continues to rotate while condensing. But any atom at the circumference has, of course, a more rapid motion than one nearer the centre. The outer atom, however, with its superior velocity, approaches the centre; carrying this superior velocity with it as it goes. Thus every atom, proceeding inwardly, and finally attaching itself to the condensed centre, adds something to the original velocity of that centre—that is to say, increases the rotary movement of the mass.
Let us now suppose this mass so far condensed that it occupies precisely the space circumscribed by the orbit of Neptune, and that the velocity with which the surface of the mass moves, in the general rotation, is precisely that velocity with which Neptune now revolves about the Sun. At this epoch, then, we are to understand that the constantly increasing centrifugal force, having gotten the better of the non-increasing centripetal, loosened and separated the exterior and least condensed stratum, or a few of the exterior and least condensed strata, at the equator of the sphere, where the tangential velocity predominated; so that these strata formed about the main body an independent ring encircling the equatorial regions:—just as the exterior portion thrown off, by excessive velocity of rotation, from a grindstone, would form a ring about the grindstone, but for the solidity of the superficial material: were this caoutchouc, or anything similar in consistency, precisely the phænomenon I describe would be presented.
The ring thus whirled from the nebulous mass, revolved, of course, as a separate ring, with just that velocity with which, while the surface of the mass, it rotated. In the meantime, condensation still proceeding, the interval between the discharged ring and the main body continued to increase, until the former was left at a vast distance from the latter.
Now, admitting the ring to have possessed, by some seemingly accidental arrangement of its heterogeneous materials, a constitution nearly uniform, then this ring, as such, would never have ceased revolving about its primary; but, as might have been anticipated, there appears to have been enough irregularity in the disposition of the materials, to make them cluster about centres of superior solidity; and thus the annular form was destroyed.[5] No doubt, the band was soon broken up into several portions, and one of these portions, predominating in mass, absorbed the others into itself; the whole settling, spherically, into a planet. That this latter, as a planet, continued the revolutionary movement which characterized it while a ring, is sufficiently clear; and that it took upon itself also, an additional movement in its new condition of sphere, is readily explained. The ring being understood as yet unbroken, we see that its exterior, while the whole revolves about the parent body, moves more rapidly than its interior. When the rupture occurred, then, some portion in each fragment must have been moving with greater velocity than the others. The superior movement prevailing, must have whirled each fragment round—that is to say, have caused it to rotate; and the direction of the rotation must, of course, have been the direction of the revolution whence it arose. All the fragments having become subject to the rotation described, must, in coalescing, have imparted it to the one planet constituted by their coalescence.—This planet was Neptune. Its material continuing to undergo condensation, and the centrifugal force generated in its rotation getting, at length, the better of the centripetal, as before in the case of the parent orb, a ring was whirled also from the equatorial surface of this planet: this ring, having been ununiform in its constitution, was broken up, and its several fragments, being absorbed by the most massive, were collectively spherified into a moon. Subsequently, the operation was repeated, and a second moon was the result. We thus account for the planet Neptune, with the two satellites which accompany him.
In throwing off a ring from its equator, the Sun re-established that equilibrium between its centripetal and centrifugal forces which had been disturbed in the process of condensation; but, as this condensation still proceeded, the equilibrium was again immediately disturbed, through the increase of rotation. By the time the mass had so far shrunk that it occupied a spherical space just that circumscribed by the orbit of Uranus, we are to understand that the centrifugal force had so far obtained the ascendency that new relief was needed: a second equatorial band was, consequently, thrown off, which, proving ununiform, was broken up, as before in the case of Neptune; the fragments settling into the planet Uranus; the velocity of whose actual revolution about the Sun indicates, of course, the rotary speed of that Sun’s equatorial surface at the moment of the separation. Uranus, adopting a rotation from the collective rotations of the fragments composing it, as previously explained, now threw off ring after ring; each of which, becoming broken up, settled into a moon:—three moons, at different epochs, having been formed, in this manner, by the rupture and general spherification of as many distinct ununiform rings.
By the time the Sun had shrunk until it occupied a space just that circumscribed by the orbit of Saturn, the balance, we are to suppose, between its centripetal and centrifugal forces had again become so far disturbed, through increase of rotary velocity, the result of condensation, that a third effort at equilibrium became necessary; and an annular band was therefore whirled off as twice before; which, on rupture through ununiformity, became consolidated into the planet Saturn. This latter threw off, in the first place, seven uniform bands, which, on rupture, were spherified respectively into as many moons; but, subsequently, it appears to have discharged, at three distinct but not very distant epochs, three rings whose equability of constitution was, by apparent accident, so considerable as to present no occasion for their rupture; thus they continue to revolve as rings. I use the phrase “apparent accident;” for of accident in the ordinary sense there was, of course, nothing:—the term is properly applied only to the result of indistinguishable or not immediately traceable law.
Shrinking still farther, until it occupied just the space circumscribed by the orbit of Jupiter, the Sun now found need of farther effort to restore the counterbalance of its two forces, continually disarranged in the still continued increase of rotation. Jupiter, accordingly, was now thrown off; passing from the annular to the planetary condition; and, on attaining this latter, threw off in its turn, at four different epochs, four rings, which finally resolved themselves into so many moons.
Still shrinking, until its sphere occupied just the space defined by the orbit of the Asteroids, the Sun now discarded a ring which appears to have had eight centres of superior solidity, and, on breaking up, to have separated into eight fragments no one of which so far predominated in mass as to absorb the others. All therefore, as distinct although comparatively small planets, proceeded to revolve in orbits whose distances, each from each, may be considered as in some degree the measure of the force which drove them asunder:—all the orbits, nevertheless, being so closely coincident as to admit of our calling them one, in view of the other planetary orbits.
Continuing to shrink, the Sun, on becoming so small as just to fill the orbit of Mars, now discharged this planet—of course by the process repeatedly described. Having no moon, however, Mars could have thrown off no ring. In fact, an epoch had now arrived in the career of the parent body, the centre of the system. The decrease of its nebulosity, which is the increase of its density, and which again is the decrease of its condensation, out of which latter arose the constant disturbance of equilibrium—must, by this period, have attained a point at which the efforts for restoration would have been more and more ineffectual just in proportion as they were less frequently needed. Thus the processes of which we have been speaking would everywhere show signs of exhaustion—in the planets, first, and secondly, in the original mass. We must not fall into the error of supposing the decrease of interval observed among the planets as we approach the Sun, to be in any respect indicative of an increase of frequency in the periods at which they were discarded. Exactly the converse is to be understood. The longest interval of time must have occurred between the discharges of the two interior; the shortest, between those of the two exterior, planets. The decrease of the interval of space is, nevertheless, the measure of the density, and thus inversely of the condensation, of the Sun, throughout the processes detailed.
Having shrunk, however, so far as to fill only the orbit of our Earth, the parent sphere whirled from itself still one other body—the Earth—in a condition so nebulous as to admit of this body’s discarding, in its turn, yet another, which is our Moon;—but here terminated the lunar formations.