The IBM Selective-Sequence
Electronic Calculator
The IBM Selective-Sequence Electronic Calculator was announced publicly on January 27, 1948, after some months of trial running. It is a large and powerful mechanical brain, and it is the intention of International Business Machines to devote it to solving scientific problems. The staff of the Watson Scientific Computing Laboratory in New York will be mainly in charge of the machine.
The machine contains about 12,500 electronic tubes and about 21,500 relays. Numbers in the machine are regularly of either 14 or 19 decimal digits. Instructions are expressed as numbers. For storage of information, the machine has a capacity of 8 registers totaling 160 decimal digits of very rapid memory in electronic tubes. Also, it has about 150 registers totaling 3000 decimal digits of less rapid memory in relays. Also, it can consult any one of 66 paper tape feeds; each row on a paper tape can hold up to 78 punched holes or 19 decimal digits, and the machine can consult 25 rows on one tape in one second. These paper tapes together give the machine about 400,000 decimal digits of memory.
For arithmetical and logical operations, the machine has an arithmetical unit using electronic tubes. This unit can carry out about 50 multiplications or about 250 additions per second, including the transfers of numbers. In each second the machine can read and perform 50 instructions, and each instruction consists, usually, of getting two numbers out of two relay registers, performing an operation, and putting the result into a third relay register.
Eckert-Mauchly’s Binac
As this book went to press, another mechanical brain, the Electronic Binary Automatic Computer, or BINAC, was announced on August 22, 1949. This machine was constructed by the Eckert-Mauchly Computer Corporation, Philadelphia, Pa., for Northrop Aircraft, Inc., Hawthorne, Calif.
This machine has some remarkable properties. It does addition or subtraction at the rate of 3500 per second. It does multiplication or division at the rate of 1000 per second. The input is from a keyboard or magnetic tape; the output is to magnetic tape or an electric typewriter. Binac has 512 registers of very rapid memory in mercury tanks, and each register holds 30 binary digits. The machine actually is a pair of twins: the storage, the computing element, and the control are double, and each twin runs in step with the other and checks every operation of the other. In tests in July the machine ran over 10 consecutive hours with no error. Each twin has only 700 electronic tubes. Binac handles all numbers in binary notation, except that the keyboard and the typewriter express numbers in octal notation ([see Supplement 2]). Finally, Binac is only 5 feet high, 4 feet long, and one foot wide.
Chapter 11
THE FUTURE:
MACHINES THAT THINK,
AND WHAT THEY MIGHT DO FOR MEN
The pen is mightier than the sword, it is often said. And if this is true, then the pen with a motor may be mightier than the sword with a motor.
In the Middle Ages, there were few kinds of weapons, and it was easy for a man to protect himself against most of them by wearing armor. As gunpowder came into use, a man could no longer carry the weight of armor that would protect him, and so armor was given up. But in 1917, armor, equipped with a motor and carrying the man and his weapons, came back into service—as the tank.