Fig. 10. Greater-than circuit.

Circuits for addition, greater than, and selection can also be determined rather easily (see Figs. [9], [10], [11]). (Note: By means of the algebra of logic, referred to in [Chapter 9] and [Supplement 2], the conditions for many relay circuits, as well as the circuit itself, may be expressed algebraically, and the two expressions may be checked by a mathematical process.) For example, let us check that the addition circuit in [Fig. 9] will enable us to add 1 and 2 and obtain 3. We take a colored pencil and draw closed the contacts for C1-1 (since C1 holds 01) and for C2-2 (since C2 holds 10). Then, when we trace through the circuit, remembering that addition is stored as 00 in the C4 relays, we find that both the C5 relays are energized. Hence C5 holds 11, which is 3. Thus Simon can add 1 and 2 and make 3!

Fig. 11. Selection Circuit.

PUTTING SIMON TOGETHER

In order to put Simon together and make him work, not very much is needed. On the outside of Simon we shall need two small mechanisms for reading punched paper tape. Inside Simon, there will be about 50 relays and perhaps 100 feet of wire for connecting them. In addition to the 15 registers (I, S1 to S8, C1 to C5, and O), we shall need a register of 4 relays, which we shall call the program register. This register will store the successive instructions read off the program tape. We can call the 4 relays of this register P8, P4, P2, P1. For example, if the P8 and P2 relays are energized, the register holds 1010, and this is the program instruction that calls for the 8th plus 2nd, or 10th, register, which is C1.

For connecting receiving registers to the bus, we shall need a relay with 2 poles, one for the 2-line and one for the 1-line, for each register that can receive a number from the bus. For example, for entering the output register, we actually need only one 2-pole relay instead of the two 1-pole relays drawn for simplicity in [Fig. 5]. There will be 13 2-pole relays for this purpose, since only 13 registers receive numbers from the bus; registers I and C5 do not receive numbers from the bus. We call these 13 relays the entrance relays or E relays, since E is the initial letter of the word entrance.

Fig. 12. Select-Receiving-Register circuit.