In many places, I have talked of mechanical brains as if they were living. For example, instead of “capacity to store information” I have spoken of “memory.” Of course, the machines are not living; but they do have individuality, responsiveness, and other traits of living beings, just as a political party pictured as a living elephant does. Besides, to treat things as persons is a help in making any subject vivid and understandable, as every song writer and cartoonist illustrates. We speak of “Old Man River” and “Father Time”; we may speak of a ship or a locomotive as “she”; and the crew on the first Harvard sequence-controlled calculator has often called her “Bessy, the Bessel engine.”

Let us pause a little longer on the subject of understanding. What is the understanding of something new? It is a state of knowing, a process of knowing more and more. The more we know about something new, the better we understand it. It is possible for almost anybody to understand almost anything, I believe. What is mainly needed in order to grasp an idea is a good collection of true statements about it and some practice in using those statements in situations. For example, no one has ever seen or touched the separate scraps of electricity called electrons. But electrons have been described and measured; hundreds of thousands of people work with electrons; they know and use true statements about electrons. In effect, these people understand electrons.

Probably the hardest task of an author is to make his statements understandable yet accurate. It is too much to hope for complete success. I shall be very grateful to any reader who points out to me the statements that he has not understood or that are in error.

As to the views I have expressed, I do not expect every reader to agree with me. In fact, I shall be glad if many a reader disagrees with me. For then someone else may say to both of us, “You’re both right and both wrong—the truth lies atwixt and atween you.” Thoughtful and tolerant disagreement is the finest climate for scientific progress.

BASIC FACTS

Many of the mechanical brains described in this book will do good work for years; but their design is already out of date. Many organizations are hard at work finding new tricks in electronics, materials, and engineering and making new mechanical brains that are better and faster.

In spite of future developments, though, the basic facts about mechanical brains will endure. These basic facts are drawn from the principles of thinking, of mathematics, of science, of engineering, etc. These facts govern all handling of information. They do not depend very much on human or mechanical energy. They do not depend very much on signs. They do not depend very much on the century, or the language, or the country. For example, “II et III V sunt,” the Romans may have said; “deux et trois font cinq,” say the French; “2 + 3 = 5,” say the mathematicians; and we say, “two and three make five.” The main effort in this book has been to make clear the basic facts about mechanical brains, for they are now a masterly instrument for obtaining new knowledge.

Edmund Callis Berkeley

New York 11, N. Y.
June 30, 1949

ACKNOWLEDGMENTS