The physical devices in the Harvard machine are numerous, as we would expect. It is perhaps not surprising that this machine has more than 760,000 parts. But, curiously enough, there are only 7 main kinds of physical devices in the major part of the machine. They are: wire, two-position switches, two-position relays ([see Chapter 2]), ten-position switches, ten-position relays, buttons, and cam contacts ([see below]). These are the devices that handle information in the form of electrical impulses. They can be combined by electrical circuits in a great variety of ways. There are, of course, other kinds of physical devices that are important, but they are not numerous, and they have rather simple duties. Looking at the machine, you can see three examples easily. Physical devices of the first kind convert punched holes into electrical impulses: 2 card feeds, 4 tape feeds. Those of the second kind convert electrical impulses into punched holes: 1 card punch, 1 tape punch. Those of the third kind convert electrical impulses into printed characters: 2 electric typewriters. We can think of a fourth kind of physical device that would be a help, but, at present writing, it does not yet exist: a device that converts printed characters into electrical impulses.
The Harvard machine, of course, is complicated. But it is complicated because of the variety of ways in which relatively simple devices have been connected together to make a machine that thinks.
Switches
A two-position switch ([see Fig. 2]) turned by hand connects a wire to either one of 2 others. These 2 positions may stand for “yes” and “no,” 0 and 1, etc. There are many two-position switches in the machine. A ten-position switch or dial switch ([see Fig. 3]) turned by hand connects the wire running into the center of the switch with a wire at any one of ten positions 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 around the edge. There are over 1400 dial switches in the machine. How does turning the pointer on the top of the dial make connection between the center wire and the edge wire? Under the face of the dial is the part that works, a short rod of metal fastened to the pointer (shown with dashes in [Fig. 3]). When the pointer turns, this rod also turns, making the desired connection.
Fig. 2.Two-position switch.
Fig. 3. Dial switch.
Relays
Two-position relays—more often called just relays ([see Chapter 2])—do the automatic routing of the electrical impulses that cause computing to take place. Each relay may take 2 positions, open or closed, and these positions may stand for 0 and 1. There are more than 3000 relays in the Harvard machine.