Running the problem a second time, and this will, at most, prove consistency.
Deliberate testing of small parts of the problem, which is very useful and is standard practice but leads only to a probability that the final result is correct.
You can operate Eniac one addition at a time, and even one pulse at a time, and see what the machine shows in its little neon bulbs. This is a very useful partial check.
Cost
The cost of Eniac is higher than that of some of the other large mechanical brains—over half a million dollars. Because some of the work was done at the Moore School by students, the cost was probably less than it otherwise would have been. The largest part of the cost was the designing of the machine and the construction of the panels; the tubes were only a small portion of the cost. The tubes used in the calculating circuits cost only 20 to 90 cents. However, no later electronic calculator need cost as much, for many improvements can now be seen.
The power required for Eniac is about 150 kilowatts or about 200 horsepower, most of which is used for the heaters of the electronic tubes. The largest number of electronic tubes mentioned for future electronic calculators is about 3000, so we can see that they are likely to use less than a quarter of the power needed for Eniac.
Eniac will doubtless give a number of years of successful operation and be extremely useful for problems that employ its assets and are not excluded by its limitations. In fact, at the Ballistic Research Laboratories, for a typical week of actual work, Eniac has already proved to be equal to 500 human computers working 40 hours with desk calculating machines, and it appears that soon two or three times as much work may be obtained from Eniac.
Chapter 8
RELIABILITY—NO WRONG RESULTS:
BELL LABORATORIES’
GENERAL-PURPOSE RELAY CALCULATOR
In 1946, Bell Telephone Laboratories in New York finished two general-purpose relay calculators—mechanical brains. They were twins. One was shipped in July 1946 to the National Advisory Committee for Aeronautics at Langley Field, Virginia. The other, after some months of trial operation, was shipped in February 1947 to the Ballistic Research Laboratories at the U. S. Army’s Proving Ground, Aberdeen, Md.
Each machine is remarkably reliable and versatile. It can do a wide variety of calculations in a great many different ways. Yet the machine never takes a new step without a check that the old step was correctly performed. There is, therefore, a chance of better than 99.999,999,999 per cent that the machine will not let a wrong result come out. The automatic checking, of course, does not prevent (1) human mistakes—for example, instructing the machine incorrectly—or (2) mechanical failures, in which the machine stops dead in its tracks, letting no result at all come out.