The Complex Computer

About 1939, an engineer at Bell Telephone Laboratories in New York, Dr. George R. Stibitz, noticed the great volume of this pattern arithmetic. He began to wonder why telephone switching equipment could not be used to do the multiplications and divisions automatically. He decided it could. All that was necessary was that the relays ([see Chapter 2]) used in regular telephone equipment should have a way of remembering and calculating with numbers. Regular telephone equipment would take care of the proper sequence of operations. Regular equipment known as teletypewriters would print the numbers of the answer when it was obtained. A teletypewriter consists essentially of a typewriter that may be operated by electrical impulses. It has a keyboard that may produce electrical impulses in sets corresponding to letters; and it can receive or transmit over wires.

Dr. Stibitz coded the numbers: each decimal digit was matched up with a group of four relays in sequence, and each of these relays could be open or closed. If 0 means open and 1 means closed, here is the pattern or code that he used:

Decimal
Digit
Relay Code
00011
10100
20101
30110
40111
51000
61001
71010
81011
91100

With regular telephone relays and regular telephone company techniques, Dr. Stibitz and Bell Telephone Laboratories designed and constructed the machine. It was called the Complex Computer and was built just for multiplying and dividing complex numbers. Six or eight panels of relays and wires were in one room. Two floors away, some of the girl computers sat in another room, where one of the teletypewriters of the machine was located. When they wished, they could type into the machine’s teletypewriter the numbers to be multiplied or divided. In a few seconds back would come the answer. In fact, there were two more computing rooms where teletypewriters of the machine were stationed. To prevent conflicts between stations, the machine had a circuit like the busy signal from a telephone.

In 1940, a demonstration of the Complex Computer took place: the computing panels remained in New York, but the teletypewriter input-output station was set up at Dartmouth College in Hanover, N. H. Mathematicians gave problems to the machine in Dartmouth, it solved them in New York, and it reported the answers in Dartmouth.

Special-Purpose Computers

With this as a beginning, Bell Laboratories developed another machine for a wide variety of mathematical processes called interpolating ([see Supplement 2]). Then, during World War II, Bell Laboratories made more special-purpose computing machines. They were used in military laboratories charged with testing the accuracy of instruments for controlling the fire of guns. These computers took in a set of gun-aiming directions put out by the fire-control instrument in some test. They also took in the set of observations that went into the fire-control instrument on that test. Then they computed the differences between the gun-aiming produced by the fire-control instrument and the gun-aiming really required by the observations. Using these differences, the fire-control instrument could be adjusted and corrected. These special-purpose computers were also useful in checking the design of new fire-control instruments and in checking changes due to new types of guns or explosives.

Regularly, after each of these special-purpose computers was finished, people began to put other problems on it. It seemed to be fated that, as soon as you had made a machine for one purpose, you wanted to use it for something else. Accordingly, in 1944, two agencies of the U. S. Government together made a contract with Bell Telephone Laboratories for two general-purpose relay computers. These two machines were finished in 1946 and are twins.

ORGANIZATION OF THE
GENERAL-PURPOSE COMPUTER