S was a pen with walls 11 inches high. On the right side an inclined plane of wire screening led from the floor of the pen to the top of its front wall. Thence the chick could jump down to where its fellows and the food and drink were. S was 17 × 14 in size.
T was a pen of the same size as S, with a block of wood 3 inches by 3 and 2 inches high in the right back corner. From this an inclined plane led to the top of the front wall (on the right side of the box). But a partition was placed along the left edge of this plane, so that a chick could reach it only via the wooden block, not by a direct jump.
U was a pen 16 × 14 × 10 inches. Along the back toward the right corner were placed a series of steps 1½ inches wide, the first 1, the second 2, and the third 3 inches high. In the corner was a platform 4 × 4, and 4 high, from which access to the top of the front wall of the pen could be gained by scrambling up inside a stovepipe 11 inches long, inclined upward at an angle of about 30°. From the edge of the wall the chick could, of course, jump down to food and society. The top of the pen was covered so that the chick could not from the platform jump onto the edge of the stovepipe or the top of the pen wall. The only means of exit was to go up the steps to the platform, up through the stovepipe to the front wall, and then jump down.
The time-curves for chicks 90, 91, 92, 93, 94 and 95, all 2-8 days old when experimented on, follow on [page 65]. The scale is the same as that in the curves of the cats and dogs. Besides these simple acts, which any average chick will accidentally hit upon and associate, there are, in the records of my preliminary study of animal intelligence, a multitude of all sorts of associations which some chicks have happened to form. Chicks have escaped from confinement by stepping on a little platform in the back of the box, by jumping up and pulling a string like that in D, by pecking at a door, by climbing up a spiral staircase and out through a hole in the wall, by doing this and then in addition walking across a ladder for a foot to another wall from which they jump down, etc. Not every chick will happen upon the right way in these cases, but the chicks who did happen upon it all formed the associations perfectly after enough trials.
The behavior of the chicks shows the same general character as that of the cats, conditioned, of course, by the different nature of the instinctive impulses. Take a chick put in T (inclined plane) for an example. When taken from the food and other chicks and dropped into the pen he shows evident signs of discomfort; he runs back and forth, peeping loudly, trying to squeeze through any openings there may be, jumping up to get over the wall, and pecking at the bars or screen, if such separate him from the other chicks. Finally, in his general running around he goes up the inclined plane a way. He may come down again, or he may go on up far enough to see over the top of the wall. If he does, he will probably go running up the rest of the way and jump down. With further trials he gains more and more of an impulse to walk up an inclined plane when he sees it, while the vain running and pecking, etc., are stamped out by the absence of any sequent pleasure. Finally, the chick goes up the plane as soon as put in. In scientific terms this history means that the chick, when confronted by loneliness and confining walls, responds by those acts which in similar conditions in nature would be likely to free him. Some one of these acts leads him to the successful act, and the resulting pleasure stamps it in. Absence of pleasure stamps all others out. The case is just the same as with dogs and cats. The time-curves are shown in [Fig. 18].
Coming now to the question of differences in intelligence between the different animals, it is clear that such differences are hard to estimate accurately. The chicks are surely very much slower in forming associations and less able to tackle hard ones, but the biggest part of the difference between what they do and what the dogs and cats do is not referable so much to any difference in intelligence as to a difference in their bodily organs and instinctive impulses. As between dogs and cats, the influence of the difference in quantity of activity, in the direction of the instinctive impulses, in the versatility of the fore limb, is hard to separate from the influence of intelligence proper. The best practical tests to judge such differences in general would be differences in memory, which are very easily got at, differences in the delicacy and complexity attainable, and, of course, differences in the slope of the curves for the same association. If all these tests agreed, we should have a right to rank one animal above the other in a scale of intelligence. But this whole question of grading is, after all, not so important for comparative psychology as its popularity could lead one to think. Comparative psychology wants first of all to trace human intellection back through the phylum to its origin, and in this aim is helped little by knowing that dogs are brighter than cats, or whales than seals, or horses than cows. Further, the whole question of ‘intelligence’ should be resolved into particular inquiries into the development of attention, activity, memory, etc.
Fig. 18.