Fig. 24. Lorenzo Lotto Portrait of Columbus.

The explorer, John Cabot (1450-1498) (Fig. [25]), is likewise reputed to have been interested in the construction of globes. In a dispatch sent from London, December 18, 1497, by the envoy Raimondi di Soncino to the Duke of Milan, we read that “this Master John has a description of the world on a map, and also on a solid sphere, which he has made, and it shows where he landed, and that sailing toward the east (west) he had passed far beyond the region of the Tanais.”[116]

Fig. 25. Portrait of Sebastian Cabot, Son of John Cabot.

That terrestrial globes were constructed toward the close of the fifteenth century is of significance, not only as a response to a new desire for more nearly accurate representation of the earth’s surface than could be set forth on a plane map, but it is likewise significant by reason of the fact that such globes as were constructed served to demonstrate the value of globe maps, and this value once demonstrated, they served to awaken a still further interest in globe making, which bears abundant fruitage in the following century.

There is a very remarkable celestial globe of the fifteenth century now belonging to the Lyceum Library of Constance, Switzerland. It is the work of Johannes Stöffler (1452-1531),[117] at one time a pastor in the town of Justingen, later a professor of mathematics in the University of Tübingen, where he achieved renown as mathematician, astronomer, cosmographer, and mechanic. It appears from the title of a publication attributed to Stöffler, ‘De artificiosa globi terrestris compositione,’[118] that he was a maker of terrestrial globes, though no such globe of his is now known, and from his letters to Reuchlin we learn that he made no less than three celestial globes.[119] One of the latter he sent to his friend, Probst Peter Wolf of Denkendorf, which represented the movements of the sun and of the moon. A second was constructed for Bishop von Dalberg of Worms, on which the stars were represented in gold.[120] Nothing further is definitely known of these two globes. A third was constructed for Bishop Daniel of Constance, which is the one now to be found in that city’s library.[121] This sphere has a diameter of 48 cm., rests upon a wooden base, and is furnished with a meridian and with a horizon circle. The forty-eight constellations of Ptolemy are represented on a dark background and are outlined in accord with recognized traditions. To a few of the constellations double names are given, as “Hercules” and “Genuflexus,” “Auriga” and “Agitator”. Stars of the first magnitude are especially distinguished by name, the majority of which are of Arabic origin, and more than one thousand stars are clearly indicated.

To the globe makers themselves, who were active agents in creating a demand for globes, there should here be added the name of Conrad Celtes (1459-1508),[122] the distinguished German humanist, as that of one who contributed most in the first years of modern times toward arousing an interest in the use of globes in the schools. Aschbach, in his History of the Vienna University,[123] tells us of the school founded in Vienna in the year 1510 by the Emperor Maximilian I, and of the instruction given in this school by Celtes. We are informed that in his lectures on mathematical geography he introduced a good text of Ptolemy in the original Greek; this he translated into Latin, interpreting the same in German, explaining the several sentences by reference to a terrestrial and to a celestial globe. Having no record that such a method had been earlier employed we may therefore conclude that this distinguished teacher was the first to proceed in the manner designated, that is, he was the first in modern times to make use of globes in geographical and astronomical instruction.

NOTES