Fig. 5. Globe according to Crates.

It appears to have been the grammarian Crates of Mallos, a contemporary of Hipparchus, and a member of the Stoic School of Philosophers, who made the first attempt to construct a terrestrial globe (Fig. [5]), and that he exhibited the same in Pergamum, not far from the year 150 B. C.[24] It seems to have been Crates’ idea that the earth’s surface, when represented on a sphere, should appear as divided into four island-like habitable regions. On the one hemisphere, which is formed by a meridional plane cutting the sphere, lies our own oecumene or habitable world, and that of the Antoecians in corresponding longitude and in opposite latitude; on the other hemisphere lies the oecumene of the Perioecians in our latitude and in opposite longitude, and that of the Antipodes in latitude and longitude opposite to us.[25] Through the formulation and expression of such a theory the idea of the existence of an antipodal people was put forth as a speculative problem, an idea frequently discussed in the middle ages, and settled only by the actual discovery of antipodal regions and antipodal peoples in the day of great transoceanic discoveries.[26] That Strabo, at a later date, had this Pergamenian example in mind when stating certain rules to be observed in the construction of globes seems probable, since he makes mention of Crates’ globe. Strabo alone among ancient writers, so far as we at present know, treats of terrestrial globes, practically such as we find in use at the present day. He thought that a globe to be serviceable should be of large size, and his reasoning can readily be understood, for what at that time was really known of the earth’s surface was small indeed in comparison with what was unknown. Should one not make use of a sphere of large dimensions, the habitable regions (Fig. [6]), in comparison with the earth’s entire surface, would occupy but small space. What Strabo states in his geography is interesting and may here well be cited. “Whoever would represent the real earth,” he says, “as near as possible by artificial means, should make a sphere like that of Crates, and upon this draw the quadrilateral within which his chart of geography is to be placed. For this purpose however a large globe is necessary since the section mentioned, though but a very small portion of the entire sphere, must be capable of containing properly all the regions of the habitable earth and of presenting an accurate view of them to those who wish to consult it. Any one who is able will certainly do well to obtain such a globe. But it should have a diameter of not less than ten feet; those who can not obtain a globe of this size, or one nearly as large, had better draw their charts on a plane surface of not less than seven feet. Draw straight lines for the parallels, and others at right angles to these. We can easily imagine how the eye can transfer the figure and extent (of these lines) from a plane surface to one that is spherical. The meridians of each country on the globe have a tendency to unite in a single point at the poles; nevertheless on the surface of a plane map there would be no advantage if the right lines alone which should represent the meridians were drawn slightly to converge.”[27]

Fig. 6. Globe according to Strabo.

It is not at all improbable that Strabo and Ptolemy made considerable advance in the practical construction of terrestrial globes, for it seems reasonable to conclude that they were in possession of such objects when writing, as they did, concerning them.

Ptolemy, we may note, expressly allowed that the size of a globe should be that which one might desire, and that it was not necessary it should be of large size. It was this great Alexandrian cosmographer who first demonstrated the scientific value of drawing on the surface of a globe or map the network of parallels and meridians, and of establishing by means of the two geographical coördinates the true geographical position of every known place. To the end of making globes more serviceable he suggested the use of a meridian circle, such as is today employed in globe construction, passing through both poles, within which circle the globe might be made to move freely on its axis. He, however, in this connection, did not give technical directions for the construction of terrestrial globes, but he says enough to assure us that the art of globe construction was measurably well understood in his day, and that the Greeks and the Romans considered them very useful instruments in the study of the heavens and the earth.[28]

The allusions of the naturalist Pliny (23-79 A. D.) to the spherical shape of the earth give us no particular intimation that he knew of the existence of terrestrial globes, but they are interesting as indicating a belief of his time in its spherical form, a belief, judging from the nature of the argument, apparently drawn from Aristotle. Referring to the shape of the earth, he observes that “everyone agrees it has the most perfect figure. We always speak of the ball of the earth, and we admit it to be a globe bounded by the poles. It has not indeed the form of an absolute sphere, from the number of lofty mountains and flat plains; but if the termination of the lines be bound by a curve, this would compose a perfect sphere. And this we learn from arguments drawn from the nature of things, although not from the same considerations which we have made use of with respect to the heavens. For in the heavens the hollow convexity everywhere bends on itself and leans upon the earth as a center, whereas the earth rises up solid and dense like something that swells up and is protruded outward. The heavens bend toward the center, while the earth goes out from the center, the continual rolling of the heavens about it forcing its immense mass into the form of a sphere.”[29]

NOTES

[1] Most of the larger general works presenting an historical survey of the science of astronomy give consideration to its beginnings, noting the interest in the subject exhibited by the early Egyptians, Assyrians, Babylonians, and by other Eastern peoples. See the introductory pages of such works as Dalambre, M. Histoire de l’astronomie ancienne. Paris, 1817; Lockyer, J. N. The Dawn of Astronomy. New York, 1894; Allan, H. A. Star Names and their Meanings; Wolf, R. Geschichte der Astronomie. München, 1877; Mädler, J. H. Geschichte der Himmelskunde von den ältesten bis auf die neuste Zeit. Braunschweig, 1873. 2 vols.; Narrien, J. N. An Historical Account of Origin and Progress of Astronomy. London, 1833.