[IX]
THEORIES REGARDING THE CANALS

In knowledge, that man only is to be condemned and despised who is not in a state of transition.

Faraday.

Having shown to the satisfaction of any reasonable mind that the delicate lines, known as canals, do exist, it will be interesting to examine some of the theories which have been advanced to explain these markings, as well as some of the absurd deductions drawn from their existence. The late Dr. J. Joly, Professor of Geology in the University of Dublin, in a paper on the Origin of the Canals of Mars ("Trans." Royal Soc., Dublin) came to the conclusion that meteoric bodies, revolving on or near the surface of Mars, produced these lines. In brief, he supposed that Mars at various times in the early stages of his history, when his rotation period was much shorter, attracted small bodies, which, after whirling about the planet, finally came down on the crust and caused these lines. He conceived of satellites twice the diameter of Phobos, or say, seventy-two miles in diameter, flying about Mars at a distance of sixty-three miles, which would at this distance, by its attractive force, exert a stress on the supposed thin crust of Mars of from fifteen to thirty tons per square foot, and thus rend the surface of the planet in a zone two hundred and twenty miles wide, thus forming two parallel ridges which might be visible to us as double canals. This preposterous idea takes no account of the greater attractive force of the Earth, and that it too should have had precisely the same experience, more often repeated. No trace of such behaviors, however, has ever been detected. The Moon, too, should have caught some of these heavy bodies, but while conspicuous cracks are seen on her surface, and delicate ridges are seen radiating from the larger volcanoes, not a trace of these great meteoric furrows has ever been observed. It takes no account of the chances​—​one in a million​—​that these cavorting meteors should meet at common centres, and if they did, the impossibility that they should stop abruptly and then start off in opposite directions. It takes no account of many of the lines following the arc of a great circle, or what finally became of three or four hundred of these meteors to tally with the number of the canals, unless it is supposed that some of them went whirling around the planet three or four times, changing their courses instantly and repeatedly. Indeed, the advancement of such absurd ideas shows the desperate despair of a man who tries to escape the admission that the lines in question may be artificial​—​and hence the result of intelligence working to a definite end​—​by a conception as crazy as one might possibly get in a disordered dream. To heighten the absurdity of this theory, if that were possible, Mr. J. L. E. Dryer, who signs a notice of this paper, while calling attention to the fact that this hypothesis takes no account of the correlation of changes in the canals with seasonal changes on the planet, otherwise soberly says: "It must be conceded that there is nothing in the new hypothesis contrary to observed facts."

Mr. J. Orr, in the pages of the "British Astronomical Journal," assuming that Schiaparelli believed that the canals were excavated (despite the fact that Schiaparelli called them canali, or channels), and compared them to the English Channel and the Channel of Mozambique​—​for at the outset he had no doubt of their being natural configurations​—​proceeds to show the impossibility of an idea that was never entertained. His attempt is as childish and ridiculous as the theory he conjures up. Mr. Orr, taking it for granted that the only explanation offered for these lines is that they are excavated, concludes that a Martian canal, like Tartarus, "should be seventy feet in depth (one might ask, why not five hundred or five thousand?) and that the canals of Mars would contain 1,634,000 of our Suez Canals, and would require an army of two hundred million men, working for one thousand of our years, for their construction," and similar idiocies regarding the population of Mars, which he concludes "must be 409,000,000, thus showing that all the adult males, and a large number of women, must have been engaged in the great work." In connection with this absurd travesty, let us pause for a moment to consider the extraordinary character of the president of this society before which this paper was read. A man who is the senior assistant of the Royal Observatory at Greenwich, instead of rebuking this balderdash as entirely beside the question, stated as the result of an experiment with a lot of charity-school children, that the canals are merely illusions of the brain, and this in the face of the testimony of a number of astronomers, many of whom are highly distinguished, that the markings do exist. This man seriously commented on the paper by saying: "He hoped that Mr. Orr's statistical, but nevertheless amusing and instructive, paper might prove one more nail in the coffin of a very absurd idea which had certainly got most undue currency, namely, that the canals of Mars could possibly be the work of human agents." Equally astounding, too, is it that this nonsense the "Astronomical Journal of the Pacific" republishes without a word of comment. But what could we expect of the mentality of the senior assistant of the Royal Observatory at Greenwich, who, with the great vault of heaven crowded with enigmas awaiting an answer, should waste a particle of gray matter in trying to ascertain precisely where Joshua stood when he commanded the Sun to stand still so that he could have a little more time for his bloody work. Even the day of the month is ascertained; he finds that the date of this murderous affair was about July 22, and that the Sun must have risen exactly at 5 A. M. and set at 7 P. M. The Moon, he concludes, must have been about its third quarter and was within half an hour of setting. He could not fix the year, however! Fancy all this detail without a word of exegetical criticism, or comment on the precise words of Joshua. "And he said in the sight of Israel, Sun, stand thou still upon Gibeon; and thou, Moon, in the valley of Ajalon. And the Sun stood still, and the Moon stayed, until the people had avenged themselves upon their enemies." Not even a pious query as to why the Lord did not shower down a few more meteorites, rather than disarrange the whole solar system. Such an attitude of the mind renders one incapable of appreciating anything in astronomic research beyond that which can be measured and photographed. The above is a fair illustration of the intolerable attitude of many of those who deny the existence of the canals, or, if admitting them as existent, resort to every expedient to disprove their artificial character.

Among the interesting suggestions as to the cause of the lines on Mars is that proposed by Professor W. H. Pickering, who, while admitting that they represent bands of vegetation, believes that they have their counterpart on the Moon, and that both are produced by volcanic forces, the cracking of the surface being the result of internal strain and stress. The fissures thus produced permit the escape of water vapor and carbon dioxide, and thus the natural irrigation of these cracks is effected and growth of vegetation follows. This opinion should have great weight, as Professor Pickering has made a profound study of lunar details, and is one of the foremost authorities on the subject. He has also drawn many of the surface features of Mars, and was at one time connected with the Lowell Observatory. He it was who suggested irrigation to account for the great apparent width of the Martian lines. In the "Annals of the Harvard College Observatory," Vol. LIII, No. 14, Professor Pickering presents a study of a crater on the Moon's surface, known as Eratosthenes, accompanied by drawings and photographs of an area within the crater revealing a few irregular cracks which he thinks correspond to the well-known canals of Mars; indeed, he calls these lines canals though he believes them to be cracks. A few spots, probably craterlets, he compares to the oases of Lowell. That there is no atmosphere on the Moon is admitted by all. Professor Pickering's keen eye has, however, detected a change in the appearance of these cracks which he attributes to vegetation, animated in its growth by water vapor and carbonic acid gas, as before remarked. In this supposition he may be right, though it seems difficult to believe that so deliquescent an organism as a plant could withstand a variation of temperature from two to three hundred degrees below zero, to one above that of boiling water. One might naturally ask why the greater cracks so conspicuous on the Moon's surface, typical examples of which are found in the Mare Serenitis, Mare Triangulatis, and surroundings, do not emit aqueous vapor and carbon dioxide, and thus show similar features of widening and change of shade. Admitting the correctness of Pickering's views, it seems impossible to see any resemblance between this diminutive agglomeration of lines within a lunar crater, and the great geodetic lines sweeping for hundreds of miles across the face of Mars.

PLATE III

CHINESE BOWL, SHOWING CRACKLE

In the lunar crater, known as Flammarion's Circle, a most typical branching crack is seen. An examination of these lunar cracks, of which I made drawings through the great telescope at the Lowell Observatory, showed them to be cracks of the most unmistakable character, paralleled on the Earth's surface, by sunbaked fissures. If volcanic forces have caused these cracks in the Moon the same kind of energy should have produced the same general results in Mars, and circular craters should equally be in evidence, for many of the lunar craters are sufficiently large to be detected were they on Mars. They would certainly be indicated on the terminator, and yet not a trace of such markings has been found. It is rather extraordinary, too, that such earthquake fissures on any great scale should not have been filled with trap, silicate, or other injected material. Indeed it is strange that such a triangulating arrangement of cracks has not been found on the Earth's surface.

PLATE IV