These facts are important because they determine the magnitude and the character of the danger when the radioactivity finally falls out of the cloud and is deposited on the surface of the earth. Those radioactive particles which disintegrate while still in the cloud need not worry us since this radiation can have no effect on living organisms that may be underneath. Provided that the cloud is more than a few hundred feet above the ground, the beta and gamma rays released in these disintegrations merely dissipate their energy in ionizing the air.

The time which the radioactive debris spends in the cloud depends most critically on one factor: the proximity of the explosion to the ground surface. The nature of the surface, whether it is soil or water, also plays a role. If the explosion has taken place right on the ground, on a soil surface, a lot of big, heavy dirt particles become incorporated into the fireball and begin to fall under the action of gravity even before the cloud stops rising. This fallout continues for a period of several hours to perhaps a half day. At the same time some of the radioactive fission products which have adhered to these dirt particles also fall out. This is the origin of the so-called close-in or local fallout, which extends for a distance downwind of the explosion of a few miles to a few hundred miles, according to the energy of the bomb and the strength of the winds. Approximately eighty per cent or so of all the fission products are accounted for by this close-in fallout in the case of a surface explosion. The shot on March 1, 1954 was of this variety.

There are several possibilities for influencing the amount of close-in fallout. One is to explode the bomb over deep water. In this case the close-in fallout amounts to between thirty and fifty per cent. This is because many of the water drops to which radioactive particles have adhered evaporate before they hit the ground. Over shallow water, however, if the fireball actually touches the bottom, the close-in fallout resembles the case of a land explosion and is again about eighty per cent or so. The close-in fallout for underground or underwater explosions will be even higher than for the surface explosions. In fact a really deep underground or underwater explosion would be completely contained and no activity would be spread around.

Another possibility for reducing the close-in fallout is to detonate the bomb on a tower so tall that the fireball cannot touch the surface. In this case the amount of close-in fallout is reduced from eighty per cent to approximately five per cent. Of course, it is not feasible to build towers for really big bombs whose fireballs may be a mile or so in diameter. In this case the bomb might be dropped from an airplane to produce the same effect. The Hiroshima explosion was an example of an air burst of a small bomb. The close-in fallout in that case was very small. Such radiation sickness as occurred there was due to the direct gamma rays and neutrons released in the explosion itself.

In the case of a near-surface explosion, where the fireball almost touches the ground, the close-in fallout is also only about five per cent. This is a somewhat surprising fact since in this case photographs show large quantities of surface material being sucked up into the cloud, just as they are in a true surface explosion.

This material certainly consists of large, heavy dirt particles which subsequently fall out of the cloud. Yet most of them somehow fail to come in contact with the radioactive fission products.

This peculiar phenomenon can be understood by looking at the details of how the fireball rises. At first the central part of the fireball is much hotter than the outer part and thus rises more rapidly. As it rises, however, it cools and falls back around the outer part, creating in this way a doughnut-shaped structure. The whole process is analogous to the formation of an ordinary smoke ring. In most of the photographs one sees, the doughnut is obscured by the cloud of water that forms, but sometimes when the weather is particularly dry, it becomes perfectly visible. During the rather orderly circulation of air through the hole, the bomb debris and the dirt that has been sucked up remain separated. (See [pictures 1-4].)

The close-in fallout accounts for only a portion of the radioactivity, ranging from less than a per cent for a high altitude shot to almost complete deposition for some ground shots. For the world-wide fallout we are interested in what happens to the remainder. This depends on how the atomic cloud is carried by the upper winds for long distances. In this connection it is important to distinguish between a big bomb and a little bomb. It is also important to distinguish between the lower and higher portions of the atmosphere called, respectively, the troposphere and the stratosphere.

The atmosphere is heated by the sun in an indirect way. The sun’s rays pass through air without warming it. They heat up instead the bottom of the atmosphere, that is, the solid ground. The atmosphere is heated in the same manner in which a boiling pot is heated on the kitchen range. The heat is delivered from below and is carried in rising currents to the top.

Only in the case of the atmosphere there is no sharp upper limit. The currents rise to an altitude of thirty to fifty thousand feet, then turn and descend. This boiling part of the atmosphere is called the troposphere or region of heat. Above it there is less vertical motion. The upper region is called the stratosphere or stratified region.