We have seen earlier that in each radioactive decay charged particles are emitted. As these move along their paths, they tear up more atoms and leave in their wake an assembly of charged particles. These charged particles strongly attract the molecules of water. They attract the molecules of air much less. The reason is that in a water molecule positive and negative charges are separated to a considerable extent whereas in the nitrogen and oxygen molecules of air the charges are distributed more evenly. As a result the track of each particle emitted in a radioactive decay provides many meeting places for the formation of water droplets.
Actually, cooled moist air has been used for many decades to make the tracks of fast charged particles visible. In one of the photographs you can see a [picture] of such “vapor trails.” It is a photograph through an apparatus called the Wilson Cloud Chamber. The myriads of radioactive disintegrations in the debris of a nuclear explosion can give vapor trails which coalesce into a real cloud. In this way weather might be influenced. (See [pictures 11 and 12].)
In spite of all this it remains highly probable that testing of nuclear explosions, as practiced at present, does not influence the weather. Radioactivity does furnish an opportunity for droplets to form. But other abundant sources are also available for droplet formation. Dust, smoke and many forms of air pollution will do the trick. Foam scattered from ocean waves evaporates and leaves a speck of salt behind. This particle of salt may be carried by the winds for many miles and may eventually become the germ around which a new drop will condense. The cosmic rays by which we are bombarded give rise to vapor trails similar to those produced by the radioactive decay products. Among the many processes of nature and the usual by-products of civilization the few atomic tests do not play an important role. This statement can stand, not as a certainty, but as a very good guess.
Among the many surprises that the future holds one may be closely connected with the weather. In the age of the airplane we are getting more and more information about the air masses around us. Air travel demands this information and also furnishes it. New techniques, such as radar, can detect the formation of a cloud and can measure the size of droplets at a great distance. In fact the information received is so plentiful that one may doubt whether we can properly understand it and utilize it.
Fortunately we no longer need to rely exclusively on our own brains. Human thought is a remarkable thing but it is slow. The modern computing machines, the “electronic brains,” are simpletons as compared to the apparatus which each of us wears in his skull. But the electronic computers have one advantage: they are fast. Soon they will be a million times as fast as our mental processes. The expression “fast as thought” is dated—it is a contemporary of the horse-and-buggy.
The electronic machines can digest weather information as fast as it is received. Some progress has already been made. In a few years all weather predictions may be machine-made.
This need not mean that weather can be predicted with certainty or for a long time ahead. The trigger processes which, starting from an insignificant and unnoticed spot of turbulence, can grow into the dimensions of a cyclone will set a limit to any art of prediction.
But to the extent that weather cannot be predicted it may be influenced. If small causes may have big effects then even the puny means available to man may change the weather—provided we know how and where to apply the lever.
First we shall have to acquire a better understanding of the weather-science of meteorology. Then we shall have to look for the appropriate trigger mechanism. This may be a cloud of dust of the right kind—or else a chemical—or perhaps a great number of radioactive particles. In one way or another atomic explosions may be used as the trigger but the trigger will not be effective until and unless the rest of the machinery is understood.
Of course atomic explosions cannot be used in really significant numbers unless we learn how to avoid those radioactive by-products which are really dangerous. Fortunately the use of nuclear fusion, best known from the hydrogen bomb, makes it possible to regulate the kind of radioactivity one obtains. We may make only such kinds of activity which decay before they have a chance to get into the human body.