Figure 16.—Dial for 1/10-Second Model Auburndale timer. (In author’s collection.)

The first of these watches were placed on the market in 1877, priced at $10.00 to the trade. Soon complaints came in that they were defective in operation and many were returned. We have seen from the specimens examined that there seems to have been no established model produced in quantity. The dial and the number of jewels varied, as well as the escapement, suggesting that the owners were groping for a salable variant of the design for which they had tooled the factory. Probably the pointed pallet escapement was used first, it being the less expensive of the two. 62 In addition to the saving effected by not requiring banking pins, the escape wheel was much cheaper to cut, as the teeth were very short and strong (see fig. [11]). Since the banking took place between the pallets and the escape wheel, there was no adjustment for the amount of slide; and since the watches were not made to close tolerances, the slide was necessarily excessive and consequently power consuming. The conventional club-tooth escapement was probably substituted as less troublesome, although the banking pins were fixed and could only be adjusted by bending them. The pallets remained solid steel, without adjustable stone inserts.

At this stage of affairs approximately $140,000 had been invested in the venture, the market was already glutted with conventional watches which enjoyed the confidence of retailers, and the Auburndale Rotary had won a bad reputation. The success of any watch depends largely on the confidence the retail dealers have in it. They are looking for a product easy to sell at an attractive profit as well as one that will stay sold and create a satisfied customer. Fowle was of course very much disappointed; before going into the venture he had been advised that he could expect to produce 200 watches per day on an expenditure of $16,000.[33] The watches reached the market at a time, the fall of 1877, almost coincidental with application by D. Azro A. Buck for patents on what was to become the Waterbury rotary. These patents represented a new and economically sound expression of the basic ideas of Hopkins. The Waterbury associates immediately commenced work aimed at getting their watch on the market by June 1878.[34] News of this certainly reached Auburndale where they were not only well aware of the cost of producing their rotary but were also aware of the strict cost and performance studies which Locke and Merritt would apply to any watch before they would invest in it. Knowledge of this very able and well organized rival, coupled with the troubles experienced in manufacturing and selling the Auburndale Rotary, seem to account for the decision to abandon it. It was unfortunate that the timing of events happened just as it did for a little more work on the Auburndale and the tools for making it would probably have placed it on a firm footing in the trade, although obviously it could never compete with what eventually became the low-priced watch, really a scaled-down alarm clock minus the alarm mechanism.

It is said that about one thousand of the “Rotaries” were made. The highest serial number to come to the author’s attention, 507, may indicate that only a part of the watches started were finished.

Accounts agree[35] that the next product of the factory was a “Timer” containing a novel escapement patented on May 28, 1878,[36] by William A. Wales. Early specimens are marked “Pat. Applied For,” but one with the serial number 996[37] bears no reference at all to a patent, presumably because issuance of the patent or patents was imminent. Apparently the timer was in full production before the patent was issued on May 28. Specimens with higher serial numbers are stamped with three patent dates, May 28, 1878,[38] June 24, 1879, and September 30, 1879, as seen in figure [13], which also shows the arrangement of the train. In this escapement the escape wheel (fig. [14]) carries in the rim any suitable number of steel pins all on the same radius from, and parallel to, the axis of wheel rotation. In all cases the wheel makes one revolution per second. The verge (figs. [14] and [15]) is so proportioned that the distance between the points of repose on the entrance and exit pallets will stop the wheel at intervals equal to half the angular distance between the pins.

In other words, with two pins in the escape wheel the escapement will beat quarters of a second, because starting from a point of repose the wheel will be arrested on the other point of repose after turning through 90°. With four pins in the escape wheel and a suitably proportioned verge the escape wheel advances in steps of 45° and beats eighths of a second. The growing trend in this period to standardize the 63 timing of sporting events in intervals of fifths of a second is reflected in still another model having five pins in the escape wheel and beating tenths of a second. By the nature of the verge in this escapement, it will be seen that the number of beats must be twice the number of pins in the escape wheel, leaving no way to secure an odd number of beats per second, hence the 1/10-second model. This must have been a less desirable form because of the much smaller verge required, plus the problem of accelerating so much mass from a dead stop 600 times per minute.