But before leaving the subject of cellulose proper I must refer back again to its chief source, wood. We inherited from the Indians a well-wooded continent. But the pioneer carried an ax on his shoulder and began using it immediately. For three hundred years the trees have been cut down faster than they could grow, first to clear the land, next for fuel, then for lumber and lastly for paper. Consequently we are within sight of a shortage of wood as we are of coal and oil. But the coal and oil are irrecoverable while the wood may be regrown, though it would require another three hundred years and more to grow some of the trees we have cut down. For fuel a pound of coal is about equal to two pounds of wood, and a pound of gasoline to three pounds of wood in heating value, so there would be a great loss in efficiency and economy if the world had to go back to a wood basis. But when that time shall come, as, of course, it must come some time, the wood will doubtless not be burned in its natural state but will be converted into hydrogen and carbon monoxide in a gas producer or will be distilled in closed ovens giving charcoal and gas and saving the by-products, the tar and acid liquors. As it is now the lumberman wastes two-thirds of every tree he cuts down. The rest is left in the forest as stump and tops or thrown out at the mill as sawdust and slabs. The slabs and other scraps may be used as fuel or worked up into small wood articles like laths and clothes-pins. The sawdust is burned or left to rot. But it is possible, although it may not be profitable, to save all this waste.

In a former chapter I showed the advantages of the introduction of by-product coke-ovens. The same principle applies to wood as to coal. If a cord of wood (128 cubic feet) is subjected to a process of destructive distillation it yields about 50 bushels of charcoal, 11,500 cubic feet of gas, 25 gallons of tar, 10 gallons of crude wood alcohol and 200 pounds of crude acetate of lime. Resinous woods such as pine and fir distilled with steam give turpentine and rosin. The acetate of lime gives acetic acid and acetone. The wood (methyl) alcohol is almost as useful as grain (ethyl) alcohol in arts and industry and has the advantage of killing off those who drink it promptly instead of slowly.

The chemist is an economical soul. He is never content until he has converted every kind of waste product into some kind of profitable by-product. He now has his glittering eye fixed upon the mountains of sawdust that pile up about the lumber mills. He also has a notion that he can beat lumber for some purposes.


VII

SYNTHETIC PLASTICS

In the last chapter I told how Alfred Nobel cut his finger and, daubing it over with collodion, was led to the discovery of high explosive, dynamite. I remarked that the first part of this process—the hurting and the healing of the finger—might happen to anybody but not everybody would be led to discovery thereby. That is true enough, but we must not think that the Swedish chemist was the only observant man in the world. About this same time a young man in Albany, named John Wesley Hyatt, got a sore finger and resorted to the same remedy and was led to as great a discovery. His father was a blacksmith and his education was confined to what he could get at the seminary of Eddytown, New York, before he was sixteen. At that age he set out for the West to make his fortune. He made it, but after a long, hard struggle. His trade of typesetter gave him a living in Illinois, New York or wherever he wanted to go, but he was not content with his wages or his hours. However, he did not strike to reduce his hours or increase his wages. On the contrary, he increased his working time and used it to increase his income. He spent his nights and Sundays in making billiard balls, not at all the sort of thing you would expect of a young man of his Christian name. But working with billiard balls is more profitable than playing with them—though that is not the sort of thing you would expect a man of my surname to say. Hyatt had seen in the papers an offer of a prize of $10,000 for the discovery of a satisfactory substitute for ivory in the making of billiard balls and he set out to get that prize. I don't know whether he ever got it or not, but I have in my hand a newly published circular announcing that Mr. Hyatt has now perfected a process for making billiard balls "better than ivory." Meantime he has turned out several hundred other inventions, many of them much more useful and profitable, but I imagine that he takes less satisfaction in any of them than he does in having solved the problem that he undertook fifty years ago.

The reason for the prize was that the game on the billiard table was getting more popular and the game in the African jungle was getting scarcer, especially elephants having tusks more than 2-7/16 inches in diameter. The raising of elephants is not an industry that promises as quick returns as raising chickens or Belgian hares. To make a ball having exactly the weight, color and resiliency to which billiard players have become accustomed seemed an impossibility. Hyatt tried compressed wood, but while he did not succeed in making billiard balls he did build up a profitable business in stamped checkers and dominoes.

Setting type in the way they did it in the sixties was hard on the hands. And if the skin got worn thin or broken the dirty lead type were liable to infect the fingers. One day in 1863 Hyatt, finding his fingers were getting raw, went to the cupboard where was kept the "liquid cuticle" used by the printers. But when he got there he found it was bare, for the vial had tipped over—you know how easily they tip over—and the collodion had run out and solidified on the shelf. Possibly Hyatt was annoyed, but if so he did not waste time raging around the office to find out who tipped over that bottle. Instead he pulled off from the wood a bit of the dried film as big as his thumb nail and examined it with that "'satiable curtiosity," as Kipling calls it, which is characteristic of the born inventor. He found it tough and elastic and it occurred to him that it might be worth $10,000. It turned out to be worth many times that.